Tuning the 3D microenvironment of reprogrammed tubule cells enhances biomimetic modeling of polycystic kidney disease.

Biomaterials

Department of Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute of Anatomy, University of Zurich, Zurich, Switzerland. Electronic address:

Published: December 2022

Renal tubular cells frequently lose differentiation markers and physiological properties when propagated in conventional cell culture conditions. Embedding cells in 3D microenvironments or controlling their 3D assembly by bioprinting can enhance their physiological properties, which is beneficial for modeling diseases in vitro. A potential cellular source for modeling renal tubular physiology and kidney diseases in vitro are directly reprogrammed induced renal tubular epithelial cells (iRECs). iRECs were cultured in various biomaterials and as bioprinted tubular structures. They showed high compatibility with the embedding substrates and dispensing methods. The morphology of multicellular aggregates was substantially influenced by the 3D microenvironment. Transcriptomic analyses revealed signatures of differentially expressed genes specific to each of the selected biomaterials. Using a new cellular model for autosomal-dominant polycystic kidney disease, Pkd1 iRECs showed disrupted morphology in bioprinted tubules and a marked upregulation of the Aldehyde dehydrogenase 1a1 (Aldh1a1). In conclusion, 3D microenvironments strongly influence the morphology and expression profiles of iRECs, help to unmask disease phenotypes, and can be adapted to experimental demands. Combining a direct reprogramming approach with appropriate biomaterials will facilitate construction of biomimetic kidney tubules and disease models at the microscale.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2022.121910DOI Listing

Publication Analysis

Top Keywords

renal tubular
12
polycystic kidney
8
kidney disease
8
physiological properties
8
diseases vitro
8
tuning microenvironment
4
microenvironment reprogrammed
4
reprogrammed tubule
4
cells
4
tubule cells
4

Similar Publications

Aging leads to nephron senescence and chronic kidney disease (CKD). In cats, indoxyl sulfate (IxS) has been previously quantified and associated with CKD, and little is known about tubular transporters. Two cohorts of cats aged 6 to 21 years were enrolled.

View Article and Find Full Text PDF

This epidemiological study aimed to identify the primary categories of kidney pathology diagnosis and their prevalence among patients admitted to Shahid Labbafinezhad Teaching Hospital. We included 1006 kidney biopsy findings from 2019 to 2022. The majority of kidney patients (78%) were between the ages of 20 and 60 years.

View Article and Find Full Text PDF

Chronic kidney disease and aging: dissecting the p53/p21 pathway as a therapeutic target.

Biogerontology

December 2024

Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

Chronic kidney diseases (CKD) are a group of multi-factorial disorders that markedly impair kidney functions with progressive renal deterioration. Aging contributes to age-specific phenotypes in kidneys, which undergo several structural and functional alterations, such as a decline in regenerative capacity and increased fibrosis, inflammation, and tubular atrophy, all predisposing them to disease and increasing their susceptibility to injury while impeding their recovery. A central feature of these age-related processes is the activation of the p53/p21 pathway signaling.

View Article and Find Full Text PDF

High intake of dietary linoleic acid may increase the incidence of many diseases. The aim of this research is to examine the impact of linoleic acid on the damage caused by calcium oxalate kidney stones on renal tubular epithelial cells. Calcium oxalate monohydrate (COM) crystals were prepared and used to treat HK-2 cells, which were further treated with different concentrations of linoleic acid in vitro.

View Article and Find Full Text PDF

Mutations in tumor suppressor genes Vhl and Rassf1a cause DNA damage, chromosomal instability and induce gene expression changes characteristic of clear cell renal cell carcinoma.

Kidney Int

December 2024

Clinic of Internal Medicine I, Hematology, Oncology and Stem Cell Transplantation, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site, Freiburg; Signalling Research Centres BIOSS and CIBSS, Faculty of Biology University of Freiburg, Freiburg, Germany. Electronic address:

RASSF1A is frequently biallelically inactivated in clear cell renal cell carcinoma (ccRCC) due to loss of chromosome 3p and promoter hypermethylation. Here we investigated the cellular and molecular consequences of single and combined deletion of the Rassf1a and Vhl tumor suppressor genes to model the common ccRCC genotype of combined loss of function of RASSF1A and VHL. In mouse embryonic fibroblasts and in primary kidney epithelial cells, double deletion of Rassf1a and Vhl caused chromosomal segregation defects and increased formation of micronuclei, demonstrating that pVHL and RASSF1A function to maintain genomic integrity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!