Calcium carbonate biomineralization is remarkable for the ability of organisms to produce calcite or aragonite with perfect fidelity, where this is commonly attributed to specific anionic biomacromolecules. However, it is proven difficult to mimic this behavior using synthetic or biogenic anionic organic molecules. Here, it is shown that cationic polyamines ranging from small molecules to large polyelectrolytes can exert exceptional control over calcium carbonate polymorph, promoting aragonite nucleation at extremely low concentrations but suppressing its growth at high concentrations, such that calcite or vaterite form. The aragonite crystals form via particle assembly, giving nanoparticulate structures analogous to biogenic aragonite, and subsequent growth yields stacked aragonite platelets comparable to structures seen in developing nacre. This mechanism of polymorph selectivity is captured in a theoretical model based on these competing nucleation and growth effects and is completely distinct from the activity of magnesium ions, which generate aragonite by inhibiting calcite. Profiting from these contrasting mechanisms, it is then demonstrated that polyamines and magnesium ions can be combined to give unprecedented control over aragonite formation. These results give insight into calcite/aragonite polymorphism and raise the possibility that organisms may exploit both amine-rich organic molecules and magnesium ions in controlling calcium carbonate polymorph.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9811428 | PMC |
http://dx.doi.org/10.1002/advs.202203759 | DOI Listing |
Polymers (Basel)
December 2024
State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
Adsorption is one of the most promising strategies for heavy metal removal. For Hg(II) removal, mineralized Ca-based shell-type self-assembly beads (MCABs) using alginate as organic polymer template were synthesized in this work. The adsorbent preparation consists of gelation of a Ca-based spherical polymer template (CAB) and rate-controlled self-assembly mineralization in bicarbonate solution with various concentrations.
View Article and Find Full Text PDFMolecules
December 2024
School of Civil Engineering, Putian University, Putian 351100, China.
Herein, the study explores a composite modification approach to enhance the use of recycled concrete aggregate (RCA) in sustainable construction by combining accelerated carbonation (AC) and nano-silica immersion (NS). RCA, a major source of construction waste, faces challenges in achieving comparable properties to virgin aggregates. Nano-silica, a potent pozzolan, is added to fill micro-cracks and voids in RCA, improving its bonding and strength.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
Concrete, as the most widely used construction material globally, is prone to cracking under the influence of external factors such as mechanical loads, temperature fluctuations, chemical corrosion, and freeze-thaw cycles. Traditional concrete crack repair methods, such as epoxy resins and polymer mortars, often suffer from a limited permeability, poor compatibility with substrates, and insufficient long-term durability. Microbial biogrouting technology, leveraging microbial-induced calcium carbonate precipitation (MICP), has emerged as a promising alternative for crack sealing.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Department of Cultural Heritage and Museology, Zhejiang University, 310028, Hangzhou, Zhejiang Province, P.R. China.
For large, open-air lithic cultural heritage, colonization is an inevitable process. This study examines the dual impact of colonization on the Leshan Giant Buddha's sandstone monuments, focusing on both biodeterioration and protection. Over three years, we conducted field surveys and monitored biocrusts (bryophytes, lichens, and biofilms) on these monuments, observing significant biodeterioration primarily due to mechanical exfoliation and acid corrosion.
View Article and Find Full Text PDFLow Carbon Mater Green Constr
December 2024
Faculty of Technology, Fiber and Particle Engineering Research Unit, University of Oulu, PO Box 4300, 90014 Oulu, Finland.
Unlabelled: This study explores the use of Electric Arc Furnace (EAF) slag as a sustainable alternative raw material in cement clinker production. The research demonstrates the synthesis of ferrite-rich clinker using EAF slag, achieving a clinker composition of 47% alite, 32% ferrite, and 20% belite while replacing 20% of clinker raw materials i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!