Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Unmanned aerial vehicles (UAVs) equipped with multi-sensors are one of the most innovative technologies for measuring plant health and predicting final yield in field conditions, especially in the water deficit situation in rain-deprived regions. The objective of this investigation was to evaluate the individual plant and canopy-level measurements using UAV imageries in three different genotypes, Suwan4452 (drought-tolerant), Pac339, and S7328 (drought-sensitive) of maize (Zea mays L.) at vegetative and reproductive stages under WW (well-watered) and WD (water deficit) conditions. At the vegetative stage, only CWSI (crop water stress index) of Pac339 and S7328 under WD increased significantly by 1.86- and 1.69-fold over WW, whereas the vegetation indices (EVI2 (Enhanced Vegetation Index 2), OSAVI (Optimized Soil-Adjusted Vegetation Index), GNDVI (Green Normalized Difference Vegetation Index), NDRE (Normalized Difference Red Edge Index), and NDVI (Normalized Difference Vegetation Index)) derived from UAV multi-sensors did not vary. At the reproductive stage, CWSI in drought-sensitive genotype (S7328) under WD increased by 1.92-fold over WW. All the vegetation indices (EVI2, OSAVI, GNDVI, NDRE, and NDVI) of Pac339 and S7328 under WD decreased when compared with those of Suwan4452. NDVI derived from GreenSeeker handheld and NDVI from UAV data was closely related (R = 0.5924). An increase in leaf temperature (T) and reduction in NDVI of WD stressed maize plants was observed (R = 0.5829) leading to yield loss (R = 0.5198). In summary, a close correlation was observed between the physiological data of individual plants and vegetation indices of canopy level (collected using a UAV platform) in drought-sensitive genotypes of maize crops under WD conditions, thus indicating its effectiveness in the classification of drought-tolerant genotypes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-022-10766-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!