The advent of ultrafast laser science offers the unique opportunity to combine Floquet engineering with extreme time resolution, further pushing the optical control of matter into the petahertz domain. However, what is the shortest driving pulse for which Floquet states can be realised remains an unsolved matter, thus limiting the application of Floquet theory to pulses composed by many optical cycles. Here we ionized Ne atoms with few-femtosecond pulses of selected time duration and show that a Floquet state can be observed already with a driving field that lasts for only 10 cycles. For shorter pulses, down to 2 cycles, the finite lifetime of the driven state can still be explained using an analytical model based on Floquet theory. By demonstrating that the amplitude and number of Floquet-like sidebands in the photoelectron spectrum can be controlled not only with the driving laser pulse intensity and frequency, but also by its duration, our results add a new lever to the toolbox of Floquet engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9675778 | PMC |
http://dx.doi.org/10.1038/s41467-022-34973-4 | DOI Listing |
J Phys Condens Matter
January 2025
School of Physical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Jadavpur, Kolkata, Kolkata, West Bengal, 700032, INDIA.
Periodically driven closed quantum systems are expected to eventually heat up to infinite temperature ; reaching a steady state described by a circular orthogonal ensemble (COE). However, such finite driven systems may exhibit sufficiently long prethermal regimes; their properties in these regimes are qualitatively different from that of their corresponding infinite temperature steady states. These, often experimentally relevant, prethermal regimes host a wide range of phenomena; they may exhibit dynamical localization and freezing, host Floquet scars, display signatures of Hilbert space fragmentation, and exhibit time crystalline phases.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA.
We present a scalable protocol for measuring full counting statistics (FCS) in experiments or tensor-network simulations. In this method, an ancilla in the middle of the system acts as a turnstile, with its phase keeping track of the time-integrated particle flux. Unlike quantum gas microscopy, the turnstile protocol faithfully captures FCS starting from number-indefinite initial states or in the presence of noisy dynamics.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mechatronic Engineering, Xi'an Technological University, Xi'an, 710021, China.
Milling chatter, a form of self-excited vibration, can cause significant damage in machining and manufacturing processes. By selecting appropriate milling parameters, milling chatter can be effectively mitigated without sacrificing milling efficiency. Within the framework of the semi-discretization scheme, this paper introduces the Newton-Simpson-based predictor-corrector methods to compute milling stability lobe diagrams.
View Article and Find Full Text PDFNat Commun
December 2024
Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD, USA.
Non-Hermitian models describe the physics of ubiquitous open systems with gain and loss. One intriguing aspect of non-Hermitian models is their inherent topology that can produce intriguing boundary phenomena like resilient higher-order topological insulators (HOTIs) and non-Hermitian skin effects (NHSE). Recently, time-multiplexed lattices in synthetic dimensions have emerged as a versatile platform for the investigation of these effects free of geometric restrictions.
View Article and Find Full Text PDFNanophotonics
November 2024
College of Science, China University of Petroleum (East China), Qingdao 266580, China.
Owing to its topological properties and band collapse, Floquet helical photonic lattices have gained increasing attention as a purely classical setting to realize the optical analogues of a wide variety of quantum phenomena. We demonstrate both theoretically and numerically that light propagation in an appropriately designed helical superlattice can exhibit spatial photonic Zitterbewegung effect, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!