Identifying Common Molecular Mechanisms in Experimental and Human Acute Kidney Injury.

Semin Nephrol

Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA.

Published: May 2022

Acute kidney injury (AKI) is a highly prevalent, heterogeneous syndrome, associated with increased short- and long-term mortality. A multitude of different factors cause AKI including ischemia, sepsis, nephrotoxic drugs, and urinary tract obstruction. Upon injury, the kidney initiates an intrinsic repair program that can result in adaptive repair with regeneration of damaged nephrons and functional recovery of epithelial activity, or maladaptive repair and persistence of damaged epithelial cells with a characteristic proinflammatory, profibrotic molecular signature. Maladaptive repair is linked to disease progression from AKI to chronic kidney disease. Despite extensive efforts, no therapeutic strategies provide consistent benefit to AKI patients. Since kidney biopsies are rarely performed in the acute injury phase in humans, most of our understanding of AKI pathophysiology is derived from preclinical AKI models. This raises the question of how well experimental models of AKI reflect the molecular and cellular mechanisms underlying human AKI? Here, we provide a brief overview of available AKI models, discuss their strengths and limitations, and consider important aspects of the AKI response in mice and humans, with a particular focus on the role of proximal tubule cells in adaptive and maladaptive repair.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017289PMC
http://dx.doi.org/10.1016/j.semnephrol.2022.10.012DOI Listing

Publication Analysis

Top Keywords

maladaptive repair
12
aki
9
acute kidney
8
kidney injury
8
aki models
8
kidney
5
repair
5
identifying common
4
common molecular
4
molecular mechanisms
4

Similar Publications

Background: Growing evidence indicates that disruptions in mitochondrial quality management contribute to the development of acute kidney injury (AKI), incomplete or maladaptive kidney repair, and chronic kidney disease. However, the temporal dynamics of mitochondrial quality control alterations in relation to renal injury and its recovery remain poorly understood and are addressed in this manuscript.

Method: ology: Male Wistar rats (n = 60) were subjected to varying durations of ischemia and reperfusion.

View Article and Find Full Text PDF

Acute kidney injury (AKI) and chronic kidney disease (CKD) represent two frequently observed clinical conditions. AKI is characterized by an abrupt decrease in glomerular filtration rate (GFR), generally associated with elevated serum creatinine (sCr), blood urea nitrogen (BUN), and electrolyte imbalances. This condition usually persists for approximately a week, causing a transient reduction in kidney function.

View Article and Find Full Text PDF

Immuno-fibrotic networks and their protein mediators, such as cytokines and chemokines, have increasingly been appreciated for their critical role in cardiac healing and fibrosis during cardiomyopathy. Immune activation, trafficking, and extravasation are tightly regulated to ensure a targeted and effective response against non-self antigens/pathogens while preserving tolerance towards self-antigens and coordinate fibrotic responses for efficient scar formation, a distinction that is severely compromised during chronic diseases. It is clear that immune cells are not only the critical regulators of post-infarct healing and scarring but are also the key players in regulating fibroblast activation during left-ventricular (LV) remodeling.

View Article and Find Full Text PDF

Unraveling Ferroptosis: A New Frontier in Combating Renal Fibrosis and CKD Progression.

Biology (Basel)

December 2024

Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.

Chronic kidney disease (CKD) is a global health concern caused by conditions such as hypertension, diabetes, hyperlipidemia, and chronic nephritis, leading to structural and functional kidney injury. Kidney fibrosis is a common outcome of CKD progression, with abnormal fatty acid oxidation (FAO) disrupting renal energy homeostasis and leading to functional impairments. This results in maladaptive repair mechanisms and the secretion of profibrotic factors, and exacerbates renal fibrosis.

View Article and Find Full Text PDF

Right ventricular remodeling in complex congenital heart disease.

Can J Cardiol

January 2025

Research Center, Montreal Heart Institute, Department of Medicine, Université de Montréal, Montreal, Canada; Adult Congenital Heart Centre, Montreal Heart Institute, Université de Montréal, Montreal, Canada. Electronic address:

In congenital heart diseases (CHD) of moderate to great complexity involving the right ventricle (RV), the morphologic RV can be exposed to significant stressors across the lifespan either in a biventricular circulation in a sub-pulmonary or sub-aortic position, or as part of a univentricular circulation. These include pressure and/or volume overload, hypoxia, ischemia, and periprocedural surgical stress leading to remodeling, maladaptation, dilation hypertrophy and dysfunction. This review examines the macroscopic remodeling of the RV in various forms of CHD and explores remodeling trajectories, along with the effects of surgeries and residual lesion repair, in tetralogy of Fallot, Ebstein anomaly, congenitally corrected transposition of the great arteries, transposition of the great arteries with atrial switch surgery, and single ventricle palliated by Fontan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!