Nomogram model based on radiomics signatures and age to assist in the diagnosis of knee osteoarthritis.

Exp Gerontol

Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Department of Radiology, Sun Yat-sen University, 52 East Meihua Rd, New Xiangzhou, Zhuhai, Guangdong Province, China. Electronic address:

Published: January 2023

AI Article Synopsis

  • Knee osteoarthritis (KOA) is prevalent among the elderly, and developing an accurate diagnostic method can significantly impact patient management and outcomes.
  • Researchers created a nomogram model using knee X-ray data and patient age, analyzing over 4,400 X-rays from 1,174 patients to quantify features of the disease.
  • The logistic regression model showed the best classification performance, and the nomogram demonstrated better predictive capabilities than radiomics alone, suggesting it may enhance clinical decision-making for KOA diagnosis.

Article Abstract

Background: Knee osteoarthritis (KOA) is a common disease in the elderly. An effective method for accurate diagnosis could affect the management and prognosis of patients.

Objectives: To develop a nomogram model based on X-ray imaging data and age, and to evaluate its effectiveness in the diagnosis of KOA.

Methods: A total of 4403 knee X-rays from 1174 patients (July 2017 to November 2018) were retrospectively analyzed. Radiomics features were extracted and selected from the X-ray image data to quantify the phenotypic characteristics of the lesion region. Feature selection was performed in three steps to enable the derivation of robust and effective radiomics signatures. Then, logistic regression (LR), support vector machine (SVM) AdaBoost, gradient boosting decision tree (GBDT), and multi-layer perceptron (MLP) was adopted to verify the performance of radiomics signatures. In addition, a nomogram model combining age with radiomics signatures was constructed. At last, receiver operating characteristic (ROC) curve, calibration and decision curves were used to evaluate the discriminative performance.

Results: The LR model has the best classification performance among the four radiomics models in testing cohort (LR AUC vs. SVM AUC: 0.843 vs. 0.818, DeLong test P = 0.0024; LR AUC vs. GBDT AUC: 0.843 vs. 0.821, P = 0.0028; LR AUC vs. MLP AUC: 0.843 vs. 0.822, P = 0.0019). The nomogram model achieved better predictive efficacy than the radiomics model in testing cohort compared to radiomics models although the statistical difference was not significant (Nomogram AUC vs. Radiomics AUC: 0.847 vs. 0.843, P = 0.06). The decision curve analysis revealed that the constructed nomogram had clinical usefulness.

Conclusion: The nomogram model combining radiomics signatures with age has good performance for the accurate diagnosis of KOA and may help to improve clinical decision-making.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2022.112031DOI Listing

Publication Analysis

Top Keywords

nomogram model
20
radiomics signatures
20
auc 0843
12
radiomics
10
model based
8
signatures age
8
knee osteoarthritis
8
accurate diagnosis
8
performance radiomics
8
model combining
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!