Selective and reversible disruption of mitochondrial inner membrane protein complexes by lipophilic cations.

Mitochondrion

Laboratory for Metabolism and Bioenergetics, Department of Biochemistry, Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Czech Republic. Electronic address:

Published: January 2023

Triphenylphosphonium (TPP) derivatives are commonly used to target chemical into mitochondria. We show that alkyl-TPP cause reversible, dose- and hydrophobicity-dependent alterations of mitochondrial morphology and function and a selective decrease of mitochondrial inner membrane proteins including subunits of the respiratory chain complexes, as well as components of the mitochondrial calcium uniporter complex. The treatment with alkyl-TPP resulted in the cleavage of the pro-fusion and cristae organisation regulator Optic atrophy-1. The structural and functional effects of alkyl-TPP were found to be reversible and not merely due to loss of membrane potential. A similar effect was observed with the mitochondria-targeted antioxidant MitoQ.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mito.2022.11.006DOI Listing

Publication Analysis

Top Keywords

mitochondrial inner
8
inner membrane
8
alkyl-tpp reversible
8
selective reversible
4
reversible disruption
4
mitochondrial
4
disruption mitochondrial
4
membrane protein
4
protein complexes
4
complexes lipophilic
4

Similar Publications

Photodynamic therapy (PDT) has emerged as an innovative approach in cancer treatment, effectively inducing tumor cell death through light-triggered reactive oxygen species (ROS) generation. Additionally, PDT can also trigger antitumor immune responses, thereby reducing the risk of postoperative tumor recurrence. However, the development of highly efficient photosensitizers aimed at activating immune responses for comprehensive tumor eradication remains at an early stage.

View Article and Find Full Text PDF

Cardiolipin, a unique phospholipid predominantly present in the inner mitochondrial membrane, is critical for maintaining mitochondrial integrity and function. Its dimeric structure and role in supporting mitochondrial dynamics, energy production, and mitophagy make it indispensable for skeletal muscle health. This review provides a comprehensive overview of cardiolipin biosynthesis, remodeling processes, and essential functions within mitochondria.

View Article and Find Full Text PDF

Lycium barbarum glycopeptide ameliorates aging phenotypes and enhances cardiac metabolism by activating the PINK1/Parkin-mediated mitophagy pathway in D-galactose-induced mice.

Exp Gerontol

January 2025

Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou 510632, China; Zhuhai Institute of Jinan University, Zhuhai 519070, China. Electronic address:

Background: Aging is a complex biological process that disrupts tissue structure and impairs physiological function, which contributes to the development of age-related diseases such as cardiovascular disorders. However, effective treatment strategies are lacking.

Objective: To investigate the geroprotective effects of Lycium barbarum glycopeptide (LbGp) and its potential mechanisms in a D-galactose-induced accelerated aging mouse model.

View Article and Find Full Text PDF

Objective: Pregnancy in cattle after embryo transfer (ET) is influenced by several factors, including embryo quality. Therefore, preparing high-quality embryos with the greatest developmental potential is essential for achieving a successful pregnancy after ET. Meanwhile, blastocysts produced by in vitro fertilization (IVF) procedure have different developmental speed during in vitro culture (IVC) and they exhibited different competence in the establishment of pregnancy.

View Article and Find Full Text PDF

To investigate macula and optic nerve head (ONH) mitochondrial metabolic activity using flavoprotein fluorescence (FPF) in normal, glaucoma suspect (GS), and open-angle glaucoma (OAG) eyes we performed a cross-sectional, observational study of FPF in normal, GS, and OAG eyes. The macula and ONH of each eye was scanned and analyzed with a commercially available FPF measuring device (OcuMet Beacon, OcuSciences Inc., Ann Arbor, MI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!