Understanding the transport of biochar and heavy metals is important for evaluation of the long-term stability and ecotoxicity of heavy metals after biochar remediation. In this study, C-labelled biochar was prepared to investigate the synergistic down migration of biochar and heavy metals in the soil profile, and the effect of ionic strength (IS) and flow rate was examined. Results showed that the C-labelled biochar with high δC (249.3 ‰) was suitable for tracing the migration of biochar without influencing its adsorption for heavy metals (i.e., Cu and Cd). Both higher IS and flow rate were favorable for the release of biochar, but higher IS inhibited the transport of biochar in soil profile, which was attributed to the enhanced primary- and secondary-minimum deposition based on the Derjaguin-Landau-Verwey-Overbeek (DLVO) analysis. The transport of Cu and Cd was facilitated by high IS and flow rate. The release of Cd from biochar was mainly affected by IS, due to ion exchange and a weaker electrostatic attraction to biochar at higher IS, while that of Cu was mainly affected by flow rate related to co-migration of metal with biochar. Metal-biochar particle was the dominant form to migrate in upper soil layer, whereas, soluble Cd and Cu desorbed from biochar were the dominant forms that migrated to the deeper soil. The synergistic down migration of biochar and heavy metals might pose less risks than the sole migration of soluble metals. That is, high IS might cause higher risks than high flow rate even though biochar and metals might transport further with high flow rate. These findings will advance the current knowledge on the migration risk involved in the in-situ remediation of heavy metal-contaminated soils by biochar.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.160229DOI Listing

Publication Analysis

Top Keywords

flow rate
28
heavy metals
24
biochar
16
migration biochar
16
biochar heavy
16
synergistic migration
12
high flow
12
metals
8
ionic strength
8
strength flow
8

Similar Publications

Ubiquitin-specific protease 7 exacerbates acute pancreatitis progression by enhancing ATF4-mediated autophagy.

In Vitro Cell Dev Biol Anim

January 2025

Department of General Surgery, Second Xiangya Hospital, Central South University, No. 139 Renmin Road, Furong District, Changsha, 410011, Hunan Province, P.R. China.

Acute pancreatitis (AP) is a serious inflammatory disease with high incidence rate and mortality. It was confirmed that overactivation of autophagy in acinar cells can increase the risk of AP. Nevertheless, the regulatory mechanism of autophagy in AP is unclear.

View Article and Find Full Text PDF

Scientists investigated probiotic-containing dressings to address the challenges associated with burn injuries, namely infection and antimicrobial resistance. The present investigation sought to evaluate the impact of innovative probiotic-loaded microparticles with in situ gelling characteristics on infected burns. The strain, Lactiplantibacillus plantarum, was selected due to its demonstrated wound-healing potential.

View Article and Find Full Text PDF

Background: Currently, there is a deficiency in nomograms specifically designed for predicting the failure of high-flow nasal cannula (HFNC) oxygen therapy in patients with hypercapnic acute respiratory failure (hypercapnic ARF). The aim of this retrospective study is to develop and evaluate a nomogram that assesses the risk of HFNC failure in this patient population.

Methods: Patients with ARF and hypercapnia (PaCO ≥ 45 mmHg in the initial arterial blood gas) who received HFNC in the intensive care unit (ICU) from January 1, 2020 to December 31, 2023 were enrolled in this study.

View Article and Find Full Text PDF

Hemodynamic processes from the portal vein(PV) to the inferior vena cava(IVC) were mimicked for three patients with portal hypertension(PH) and the effects of stent parameters on the outcomes of transjugular intrahepatic portosystemic shunt(TIPS) were investigated through computational fluid dynamics(CFD). The liver region was simulated with porous media model and the spatial distributions of superior mesenteric vein(SMV) and splenic vein(SV) blood were solved through the Eulerian multiphase model. The present method is able to simulate the PH flow and predict the PV pressure, the stent shunt rate and the SMV blood proportion after TIPS treatment.

View Article and Find Full Text PDF

: The utilization of intra-aortic balloon pump (IABP) and Impella has been suggested as means of left ventricular unloading in veno-arterial extracorporeal membrane oxygenation (VA-ECMO) patients. This study aimed to assess the local hemodynamic alterations in VA-ECMO patients through simulation analyses. : In this study, a 0D-3D multiscale model was developed, wherein resistance conditions were employed to define the flow-pressure relationship.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!