New mechanistic insights into PAHs transport across wheat root cell membrane: Evidence for ABC transporter mediation.

Sci Total Environ

College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China. Electronic address:

Published: February 2023

Polycyclic aromatic hydrocarbons (PAHs) are a class of highly carcinogenic organic pollutants. Our previous results revealed that the active uptake of PAHs by plant roots is performed through H/PAHs co-transport. However, the proteins and mechanisms of co-transport of PAHs remain unknown. We hypothesized that ABC transporters are involved in PAHs co-transport via the roots. We found a total of 47 ABC transporters with alkalinity and hydrophobicity which were up-regulated or newly expressed in the wheat roots after phenanthrene exposure. And the concentration of ABC transporters rose. There was a positive relationship between the concentration of phenanthrene and ABC transporter expression in the wheat roots. Additionally, the trend observed in the ABC transporters expression was also found in the gene expression. With energies below -6 kcal mol, a stable docking conformation formed between ABC transporters and PAHs. π-π stacking and van der Waals force bound PAHs to ABCB or ABCG. The binding strength of ABCB subfamily proteins with homodimers is stronger than that of ABCG subfamily proteins with single molecules. ABC transporters may transport PAHs by forming a dimer-shaped pocket, translocating it into cells, then opening it within the cells, to release the bound PAHs. These results contributed to our understanding of how ABC transporters aid plant root uptake of PAHs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.160251DOI Listing

Publication Analysis

Top Keywords

abc transporters
28
pahs
10
abc
9
abc transporter
8
uptake pahs
8
wheat roots
8
bound pahs
8
subfamily proteins
8
transporters
7
mechanistic insights
4

Similar Publications

Unlabelled: RamA is an intrinsic regulator in , belonging to the AraC family of transcription factors and conferring a multidrug resistance phenotype, especially for tetracycline-class antibiotics. The ATP-binding cassette transporters MlaFEDCB in bacteria play essential roles in functions essential for cell survival and intrinsic resistance to many antibiotics. We found deletion of resulted in a fivefold decrease in the transcriptional levels of the operon.

View Article and Find Full Text PDF

Background: (Skuse) is an invasive and widespread mosquito species that can transmit dengue, chikungunya, yellow fever, and Zika viruses. Its control heavily relies on the use of insecticides. However, the efficacy of the insecticide-based intervention is threatened by the increasing development of resistance to available insecticides.

View Article and Find Full Text PDF

Objective: To investigate the reversal effect and mechanism of asiatic acid (AA) on multidrug resistance in human adriamycin (ADR) chronic myeloid leukemia K562/ADR cells.

Methods: CCK-8 assay was used to detect the resistance of K562 cells and K562/ADR cells to ADR. CCK-8 assay was used to detect the effect of AA on K562/ADR cell viability and adriamycin sensitization.

View Article and Find Full Text PDF

Pomegranate ATP-binding cassette transporter PgABCG9 plays a negative regulatory role in lignin accumulation.

Int J Biol Macromol

December 2024

Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China. Electronic address:

Seed hardness is an important quality characteristic of pomegranate fruit. The development of seed hardness relies on the deposition of lignin in the inner seed coat, but the underlying molecular mechanisms remain unclear. In this study, we identified a member of ABCG transporters, PgABCG9, which may function in seed hardening by negatively regulating lignin biosynthesis.

View Article and Find Full Text PDF

Introduction: Congenital Hyperinsulinism (CHI) has not been previously studied in Ukraine. We therefore aimed to elucidate the genetics, clinical phenotype, histological subtype, treatment and long-term outcomes of Ukrainian patients with CHI.

Methods: Forty-one patients with CHI were recruited to the Ukrainian national registry between the years 2014-2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!