A modified biodegradable mesh ureteral stent for treating ureteral stricture disease.

Acta Biomater

Department of Urology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, Jiangsu 210029, China; The Affiliated Kezhou People's Hospital of Nanjing Medical University, China. Electronic address:

Published: January 2023

Ureteral stricture disease (USD) is a common urologic condition. Patients with ureteral stricture disease may suffer from ipsilateral flank pain, nausea, urinary calculi, infection, and impaired renal function. The treatments of USD include surgery, followed by implantation of the ureteral stent to aid the drainage of the urine. The traditional ureteral stent may sometimes cause urological infection, encrustation, and discomfort. To decrease the complication of the ureteral stent, we modified the structure and material based on the traditional ureteral stent. The traditional nondegradable Double-J shape tubular ureteral stent was turned into the biodegradable mesh ureteral stent. The modified mesh ureteral stent and Double-J ureteral stent were inserted into the ureters of the USD animals, respectively. The results of the gross morphology, serology, urinalysis, histology, microstructure, et al. demonstrated that modified mesh ureteral stent has a favorable ability in supporting the ureter and has no effect on cell proliferation, migration, apoptosis, and cell cycle of the human uroepithelial cells. The mesh ureteral stent could relieve ureter obstruction and can be slowly biodegraded after 3-5 months of implantation without the need for a second surgery to remove the stent. Compared to the Double-J ureteral stent, the modified mesh ureteral stent has a lower rate of urinary tract infection and less encrustation. It is expected to be an alternative treatment approach for USD. However, due to the limited number of animals and clinical data, further study focused on the application value in clinical practice are essential. STATEMENT OF SIGNIFICANCE: This study demonstrates: 1. A modified biodegradable mesh ureteral stent; 2. Without the need for a second surgery to remove the stent; 3. A lower rate of urinary tract infection and less encrustation than a double-J ureteral stent; 4. An alternative treatment approach for USD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2022.11.022DOI Listing

Publication Analysis

Top Keywords

ureteral stent
60
mesh ureteral
28
ureteral
18
stent
17
biodegradable mesh
12
ureteral stricture
12
stricture disease
12
infection encrustation
12
stent modified
12
modified mesh
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!