Adaptive antioxidant response to mitochondrial fatty acid oxidation determines the proliferative outcome of cancer cells.

Cancer Lett

Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, Rome, 00133, Italy; IRCCS San Raffaele Roma, Via di Val Cannuta, 247, Rome, 00166, Italy. Electronic address:

Published: February 2023

Alterations in lipid catabolism have been broadly described in cancer cells and show tumor-type specific effects on proliferation and cell survival. The factor(s) responsible for this heterogeneity is currently unknown and represents the main limitation in the development of therapeutic interventions that impair lipid metabolism. In this study, we focused on hexanoic acid, a medium-chain fatty acid, that can quickly boost oxidative metabolism by passively crossing mitochondrial membranes. We demonstrated that the antioxidant adaptation of cancer cells to increased fatty acid oxidation is predictive of the proliferative outcome. By interfering with SOD1 expression and glutathione homeostasis, we verified that mitochondrial fatty acid oxidation has antitumor effects in cancer cells that efficiently buffer ROS. In contrast, increased ROS levels promote proliferation in cells with an imbalanced antioxidant response. In addition, an increase in mitochondrial mass and mitophagy activation were observed, respectively. Overall, these data demonstrate that the capacity to manage ROS from mitochondrial oxidative metabolism determines whether lipid catabolism is advantageous or detrimental for cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2022.216010DOI Listing

Publication Analysis

Top Keywords

cancer cells
20
fatty acid
16
acid oxidation
12
antioxidant response
8
mitochondrial fatty
8
proliferative outcome
8
lipid catabolism
8
oxidative metabolism
8
cells
6
mitochondrial
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!