A facultative ectomycorrhizal association is triggered by organic nitrogen.

Curr Biol

State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China. Electronic address:

Published: December 2022

Increasing nitrogen (N) deposition often tends to negatively impact the functions of belowground ectomycorrhizal networks, although the exact molecular mechanisms underlying this trait are still unclear. Here, we assess how the root-associated fungus Clitopilus hobsonii establishes an ectomycorrhiza-like association with its host tree Populus tomentosa and how this interaction is favored by organic N over mineral N. The establishment of a functional symbiosis in the presence of organic N promotes plant growth and the transfer of N from the fungus to above ground plant tissues. Genomic traits and in planta transcriptional signatures suggest that C. hobsonii may have a dual lifestyle with saprotrophic and mutualistic traits. For example, several genes involved in the digestion of cellulose and hemicellulose are highly expressed during the interaction, whereas the expression of multiple copies of pectin-digesting genes is tightly controlled. Conversely, the nutritional mutualism is dampened in the presence of ammonium (NH) or nitrate (NO). Increasing levels of NH led to a higher expression of pectin-digesting genes and a continuous increase in hydrogen peroxide production in roots, whereas the presence of NO resulted in toxin production. In summary, our results suggest that C. hobsonii is a facultative ectomycorrhizal fungus. Access to various forms of N acts as an on/off switch for mutualism caused by large-scale fungal physiological remodeling. Furthermore, the abundance of pectin-degrading enzymes with distinct expression patterns during functional divergence after exposure to NH or organic N is likely to be central to the transition from parasitism to mutualism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2022.10.054DOI Listing

Publication Analysis

Top Keywords

facultative ectomycorrhizal
8
pectin-digesting genes
8
ectomycorrhizal association
4
association triggered
4
organic
4
triggered organic
4
organic nitrogen
4
nitrogen increasing
4
increasing nitrogen
4
nitrogen n deposition
4

Similar Publications

Mycorrhizal symbioses in the Andean paramo.

Mycorrhiza

April 2024

Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.

The Andean paramo, hereafter "paramo", is a Neotropical high-mountain region between the treeline and permanent snowline (3500-4800 m) and is considered the world's coolest biodiversity hotspot. Because of paramo's high humidity, solar radiation and temperature variation, mycorrhizal symbiosis is expected to be essential for plants. Existing theory suggests that replacement of arbuscular mycorrhizal (AM) by ectomycorrhizal (ECM) and then ericoid mycorrhizal plants (ERM) can be expected with increasing elevation.

View Article and Find Full Text PDF

Morels, which belong to the Ascomycete genus , are highly valued edible fungi treasured by gourmet chefs worldwide. Some species are saprotrophic and others are able to form facultative mycorrhizal-like associations with plant roots without establishing true ectomycorrhizal symbioses. In general, it is considered that the formation of asexual spores, or mitospores, is an important step in the life cycle of morels.

View Article and Find Full Text PDF

A facultative ectomycorrhizal association is triggered by organic nitrogen.

Curr Biol

December 2022

State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Dongxiaofu 1, Beijing 10091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Road 73, Hangzhou 311400, China. Electronic address:

Increasing nitrogen (N) deposition often tends to negatively impact the functions of belowground ectomycorrhizal networks, although the exact molecular mechanisms underlying this trait are still unclear. Here, we assess how the root-associated fungus Clitopilus hobsonii establishes an ectomycorrhiza-like association with its host tree Populus tomentosa and how this interaction is favored by organic N over mineral N. The establishment of a functional symbiosis in the presence of organic N promotes plant growth and the transfer of N from the fungus to above ground plant tissues.

View Article and Find Full Text PDF

Atheliales (Agaricomycetes, Basidiomycota) is an order mostly composed of corticioid fungi, containing roughly 100 described species in 20 genera. Members exhibit remarkable ecological diversity, including saprotrophs, ectomycorrhizal symbionts, facultative parasites of plants or lichens, and symbionts of termites. Ectomycorrhizal members are well known because they often form a major part of boreal and temperate fungal communities.

View Article and Find Full Text PDF

The influence of mycorrhizal symbiosis on ecosystem processes depends on the mycorrhizal type and status of plants. Early research hypothesized that the proportion of arbuscular mycorrhizal (AM) species decreases and of ectomycorrhizal (ECM) and ericoid mycorrhizal (ERM) species increases along increasing elevations and latitudes. However, there is very scarce information about this pattern along elevation gradients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!