Efficient and simple genetic engineering of enteroids using mouse isolated crypts for investigating intestinal functions.

Biochem Biophys Res Commun

Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan; Department of Cell Biological Science, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan. Electronic address:

Published: December 2022

Intestinal epithelial cells separate subepithelial tissues from luminal environment formed with food, incoming pathogens, and resident intestinal microbiota, etc., and elicit various intestinal function. Enteroid, a three-dimensional culture system of small intestinal epithelial cells, has been widely used for analyzing the intestinal function, further a transgenic enteroid was developed to investigate the molecular mechanisms. However, conventional transgenic enteroid production method, which transfer gene into single stem cells, has limitations including low efficiency and time-consuming. Here we show that by gene transfer into small intestinal isolated crypts maintaining stem cell niche, a transgenic enteroid was obtained quickly and efficiently. Isolated crypts were transfected by lentiviral vector without separating into single cells, and transgenic enteroid composed of all lineages of intestinal epithelial cells was generated at day 7 with yield of 56%, maintaining the intestinal function in drug transport and innate immunity. Our efficient and simple transgenic enteroid generation method enables high-throughput investigation of intestinal epithelial cells and contributes to understanding intestinal function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2022.11.008DOI Listing

Publication Analysis

Top Keywords

transgenic enteroid
20
intestinal epithelial
16
epithelial cells
16
intestinal function
16
isolated crypts
12
intestinal
11
efficient simple
8
small intestinal
8
cells
6
enteroid
6

Similar Publications

Noncoding Vault RNA1-1 Impairs Intestinal Epithelial Renewal and Barrier Function by Interacting With CUG-binding Protein 1.

Cell Mol Gastroenterol Hepatol

December 2024

Cell Biology Group, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland; Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland. Electronic address:

Article Synopsis
  • The study investigates the role of small noncoding vault RNA (vtRNA1-1) in the intestinal epithelium, focusing on its impact on epithelial renewal and barrier function.
  • It found that elevated levels of vtRNA1-1 are associated with mucosal injury and increased gut permeability in shock patients and septic mice, indicating a negative effect on intestinal health.
  • The research also suggests that vtRNA1-1 inhibits the expression of key proteins involved in gut barrier function by interacting with CUG-binding protein 1 (CUGBP1), highlighting a potential mechanism for gut mucosal disruption in critical illness.
View Article and Find Full Text PDF

Paneth cell-derived iNOS is required to maintain homeostasis in the intestinal stem cell niche.

J Transl Med

November 2023

Radiation Oncology Key Laboratory of Sichuan Province, Department of Experimental Research, Sichuan Cancer Hospital & Institute, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, 610041, China.

Background: Mammalian intestinal epithelium constantly undergoes rapid self-renewal and regeneration sustained by intestinal stem cells (ISCs) within crypts. Inducible nitric oxide synthase (iNOS) is an important regulator in tissue homeostasis and inflammation. However, the functions of iNOS on ISCs have not been clarified.

View Article and Find Full Text PDF

Gasdermins (GSDMs) share a common functional domain structure and are best known for their capacity to form membrane pores. These pores are hallmarks of a specific form of cell death called pyroptosis and mediate the secretion of pro-inflammatory cytokines such as interleukin 1β (IL1β) and interleukin 18 (IL18). Thereby, Gasdermins have been implicated in various immune responses against cancer and infectious diseases such as acute Typhimurium (Tm) gut infection.

View Article and Find Full Text PDF

The determinants of severe disease caused by West Nile virus (WNV) and why only ~1% of individuals progress to encephalitis remain poorly understood. Here, we use human and mouse enteroids, and a mouse model of pathogenesis, to explore the capacity of WNV to directly infect gastrointestinal (GI) tract cells and contribute to disease severity. At baseline, WNV poorly infects human and mouse enteroid cultures and enterocytes in mice.

View Article and Find Full Text PDF

Intestinal epithelial stem cells (ISCs) are responsible for intestinal epithelial barrier renewal; thereby, ISCs play a critical role in intestinal pathophysiology research. While transgenic ISC reporter mice are available, advanced translational studies lack a large animal model. This study validates ISC isolation in a new porcine Leucine Rich Repeat Containing G Protein-Coupled Receptor 5 (LGR5) reporter line and demonstrates the use of these pigs as a novel colorectal cancer (CRC) model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!