Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Direct interspecies electron transfer (DIET) stimulated by conductive materials (CMs) enables intercellular metabolic coupling that can address the unfavorable thermodynamical dilemma inherent in anaerobic digestion (AD). Although the DIET mechanism and stimulation have been extensively summarized, the methanogenesis contribution, characterization techniques, and downstream processes of CMs-led DIET in AD are surprisingly under-reviewed. Therefore, this review aimed to address these gaps. First, the contribution of CMs-led DIET to methanogenesis was re-evaluated by comparing the effect of various factors, including volatile fatty acids, free ammonia, and functional enzymes. It was revealed that AD systems are usually intricate and cannot allow the methanogenesis stimulation to be singularly attributed to the establishment of DIET. Additionally, considerable attention has been attached to the characterization of DIET occurrence, involving species identification, gene expression, electrical properties, cellular features, and syntrophic metabolism, suggesting the significance of accurate characterization methods for identifying the syntrophic metabolism interactions. Moreover, the type of CMs has a significant impact on AD downstream processes involving biogas purity, sludge dewaterability, and biosolids management. Finally, the central bottleneck consists in building a mathematical model of DIET to explain the mechanism of DIET in a deeper level from kinetics and thermodynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2022.116732 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!