Feeder cells are essential to derive pluripotent stem cells (PSCs). Mouse embryonic fibroblasts (MEF) are widely used as feeder to generate and culture embryonic stem cells (ESCs) and induced PSCs (iPSCs) in many species. However it may not be suitable for livestock ESCs/iPSCs due to interspecies difference. Previously we derived bovine iPSCs from bovine Sertoli cells using MEF feeder. Here we compared the effects of MEF feeder and bovine embryonic fibroblasts (BEF) feeder on the maintenance of bovine iPSC pluripotency and morphology as well their contributions to the naïve-like conversion, based on a naïve medium (NM). The results showed successful conversion of the primed bovine iPSCs to naïve-like state within 3-4 days both on MEF feeder and BEF feeder in NM (termed as MNM and BNM respectively). These naïve-like iPSCs showed normal karyotype. There were more iPSC colonies under BNM condition than MNM condition. Epigenetically, histone modification H3K4 was upregulated, while H3K27 was downregulated in the naïve-like iPSCs. We further analyzed the naïve markers and differentiation potential both in vitro and in vivo of these cells, which were all reserved throughout the maintenance. Together, bovine naïve-like iPSCs can be generated both on MEF and BEF feeder in NM condition. The BNM condition is able to sustain the pluripotency and differentiation potential of the naïve-like bovine iPSCs, and improve the conversion efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.theriogenology.2022.10.043 | DOI Listing |
Theriogenology
February 2025
Key Laboratory of Livestock and Poultry Multi-omics of Ministry of Agriculture and Rural Affairs, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, 250100, China; Technical Innovation Center of Dairy Cattle Breeding Industry of Shandong Province, Jinan, 250100, China; College of Life Sciences, Shandong Normal University, Jinan, 250358, China. Electronic address:
The use of tankyrase inhibitors is essential for capturing livestock embryonic stem cells (ESC), yet their mechanisms of action remain largely uncharacterized. Previous studies indicate that their roles extend beyond the suppression of canonical WNT signaling. This study investigates the effects of the tankyrase inhibitor IWR-1 on maintaining the pluripotency of bovine embryonic stem cells (bESC) cultured on mitotically inactivated mouse embryonic fibroblasts (MEF).
View Article and Find Full Text PDFStem Cell Res Ther
January 2024
Department of Pulmonary and Critical Care Medicine, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China.
Background: The stem cell characteristic makes basal cells desirable for ex vivo modeling of airway diseases. However, to date, approaches allowing them extensively in vitro serial expansion and maintaining bona fide stem cell property are still awaiting to be established. This study aims to develop a feeder-free culture system of mouse airway basal stem cells (ABSCs) that sustain their stem cell potential in vitro, providing an experimental basis for further in-depth research and mechanism exploration.
View Article and Find Full Text PDFPLoS Biol
December 2023
Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America.
Circadian regulation of gene expression is prevalent and plays critical roles in cell differentiation. However, its roles in the reprogramming of differentiated cells remain largely unknown. Here, we found that one of the master circadian regulators PER1 promoted virus-mediated reprogramming of mouse embryonic fibroblasts (MEFs) to induced neurons (iNs) and induced pluripotent stem cells (iPSCs).
View Article and Find Full Text PDFCell Biosci
December 2023
Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
Background: The scarcity of pluripotent stem cells poses a major challenge to the clinical application, given ethical and biosafety considerations. While germline stem cells commit to gamete differentiation throughout life, studies demonstrated the spontaneous acquisition of pluripotency by spermatogonial stem cells (SSCs) from neonatal testes at a low frequency (1 in 1.5 × 10).
View Article and Find Full Text PDFBio Protoc
November 2023
Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo ward, Chiba, Japan.
The blastocysts consist of dozens of cells of three distinct lineages: epiblast (Epi), trophoblast (TB), and primitive endoderm (PrE). All embryonic and extraembryonic tissues are derived from Epi, TB, and PrE. Stem cell lines representing preimplantation Epi and TB have been established and are known as embryonic stem cells (ESCs) and trophoblast stem cells (TSCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!