A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

How strong should my anchor be for estimating group and individual level meaningful change? A simulation study assessing anchor correlation strength and the impact of sample size, distribution of change scores and methodology on establishing a true meaningful change threshold. | LitMetric

AI Article Synopsis

  • The text discusses the importance of using clinical outcome assessments (COAs) to measure treatment benefits in clinical trials and highlights the need for effective methods to derive meaningful change thresholds (MCTs).
  • A simulation study examined how sample size, variability in change scores, and anchor correlation strength impact the accuracy of estimated MCTs for both individual and group-level results.
  • The findings indicate that individual-level responder definitions (RDs) are more accurately identified using predictive modeling than ROC curves, while group-level estimates consistently underestimate MCTs, emphasizing the importance of anchor correlation in achieving reliable results.

Article Abstract

Purpose: Treatment benefit as assessed using clinical outcome assessments (COAs), is a key endpoint in many clinical trials at both the individual and group level. Anchor-based methods can aid interpretation of COA change scores beyond statistical significance, and help derive a meaningful change threshold (MCT). However, evidence-based guidance on the selection of appropriately related anchors is lacking.

Methods: A simulation was conducted which varied sample size, change score variability and anchor correlation strength to assess the impact of these variables on recovering the simulated MCT for interpreting individual and group-level results. To assess MCTs derived at the individual-level (i.e. responder definitions; RDs), Receiver Operating Characteristic (ROC) curves and Predictive Modelling (PM) analyses were conducted. To assess MCTs for interpreting change at the group-level, the mean change method was conducted.

Results: Sample sizes, change score variability and magnitude of anchor correlation affected accuracy of the estimated MCT. For individual-level RDs, ROC curves were less accurate than PM methods at recovering the true MCT. For both methods, smaller samples led to higher variability in the returned MCT, but higher variability still using ROC. Anchors with weaker correlations with COA change scores had increased variability in the estimated MCT. An anchor correlation of around 0.50-0.60 identified a true MCT cut-point under certain conditions using ROC. However, anchor correlations as low as 0.30 were appropriate when using PM under certain conditions. For interpreting group-level results, the MCT derived using the mean change method was consistently underestimated regardless of the anchor correlation.

Conclusion: Sample size and change score variability influence the necessary anchor correlation strength when recovering individual-level RDs. Often, this needs to be higher than the commonly accepted threshold of 0.30. Stronger correlations than 0.30 are required when using the mean change method. Results can assist researchers selecting and assessing the quality of anchors.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11136-022-03286-wDOI Listing

Publication Analysis

Top Keywords

anchor correlation
20
correlation strength
12
sample size
12
change
12
change scores
12
change score
12
score variability
12
change method
12
meaningful change
8
change threshold
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!