Rigid spinal fusion with instrumentation has been widely applied in treating degenerative spinal disorders and has shown excellent and stable surgical results. However, adjacent segment pathology or implants' loosening could be problematic due to the spine's segmental fusion. Therefore, this study verified a novel concept for posterior stabilization with polyethylene inserts inside a pedicle screw assembly using bone models. We observed that although the gripping capacity of the dynamic pedicle screw system using a tensile and compression tester was less than half that of the rigid pedicle screw system, the flexion-extension moment of the dynamic pedicle screws was significantly lower than that of the rigid pedicle screws. Furthermore, while the bending force of the rigid pedicle screw assembly increased linearly with an increase in the bending angle throughout the test, that of the dynamic pedicle screw assembly also increased linearly until a bending angle of 2.5° was reached. However, this angle decreased at a bending angle of more than 2.5°. Additionally, the fatigue test of 1.0 × 10 cycles showed that the pull-out force of the dynamic pedicle screws from two different polyurethane foam blocks was significantly higher than that of the rigid pedicle screws. Therefore, based on our results, we propose that the device can be applied in clinical cases to reduce screw loosening and adjacent segment pathology.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.35191DOI Listing

Publication Analysis

Top Keywords

pedicle screw
24
dynamic pedicle
20
rigid pedicle
16
pedicle screws
16
screw system
12
screw assembly
12
bending angle
12
pedicle
9
adjacent segment
8
segment pathology
8

Similar Publications

Background: Prone lateral spinal surgery for simultaneous lateral and posterior approaches has recently been proposed to facilitate surgical room efficiency. The purpose of this study is to evaluate the feasibility and outcomes of minimally invasive prone lateral spinal surgery using a rotatable radiolucent Jackson table.

Methods: From July 2021 to June 2023, a consecutive series of patients who received minimally invasive prone lateral spinal surgery for various etiologies by the same surgical team were reviewed.

View Article and Find Full Text PDF

Background: Robotic-assisted spinal surgery has reportedly improved the accuracy of instrumentation with smaller incisions, improving surgical outcomes and reducing hospital stay. However, robot-assisted spine surgery has thus far been confined to placement of pedicle screw instrumentation only. This pilot study aims to explore the feasibility of utilizing the Mazor™ X Stealth Edition (Medtronic, Sofamor Danek USA), robotic-arm platform in the minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) procedure inclusive of interbody cage placement, in our institution.

View Article and Find Full Text PDF

Background: There is no consensus on the association between final local kyphosis and residual back pain (RBP) after traumatic vertebral fracture. The aim of this study was to investigate whether there is an association between the final local kyphosis angle and RBP in patients with traumatic vertebral fractures at the thoracolumbar junction who underwent single posterior surgery with percutaneous pedicle screws and implant removal after fracture healing. A second goal was to determine the optimal cut-off value for the final local kyphosis angle with and without RBP.

View Article and Find Full Text PDF

Objective: The pedicle screw insertion technique has evolved significantly, and despite the challenges of precise placement, advancements like AR-based surgical navigation systems now offer enhanced accuracy and safety in spinal surgery by integrating real-time, high-resolution imaging with virtual models to aid surgeons. This study aims to evaluate the differences in accuracy between novel AR-guided pedicle screw insertion and conventional surgery techniques.

Methods: A randomized controlled trial was conducted from March 2019 to December 2023 to compare the efficacy of AR-guided pedicle screw fixation with conventional freehand surgery using CT guidance.

View Article and Find Full Text PDF

Objective: This study aims to evaluate the clinical outcomes of utilizing C1 posterior arch screws (PAS) combined with C2 translaminar screws as an adjunct for reinforcing upper cervical spine fixation.

Methods: A retrospective analysis was conducted on four male patients who underwent surgery involving C1 PASs and C2 translaminar screws between January 2022 and February 2024. Surgical technique involved the insertion of standard C1 lateral mass screws (LMS) and C2 pedicle screws, followed by the placement of C1 PASs and C2 translaminar screws for additional fixation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!