The global pandemic of COVID-19 is a serious public health concern. Over 625 million confirmed cases and more than 6 million deaths have been recorded worldwide. Although several vaccines and antiviral medications have been developed, their efficacy is limited by the emerging new SARS-CoV-2 strains. Peptide-based therapeutics is a fast-growing class of new drugs and have unique advantages over large proteins and small molecules. Antiviral peptides (AVPs) are short polycationic antivirals with broad-spectrum effects, which have been shown to exert both prophylactic and therapeutic actions against reported coronaviruses. The potential therapeutic targets of AVPs are located either on the virus (e.g., E-protein and S-protein) to prohibit viral binding or host cells, particularly, those present on the cell surface (e.g., ACE2 and TMPRSS2). Despite AVPs having promising antiviral effects, their efficacy is limited by low bioavailability. Thus, nanoformulation is a prerequisite for prolonged bioavailability and efficient delivery. This review aimed to present an insight into the therapeutic AVP targets on both virus and host cells by discussing their antiviral activities and associated molecular mechanisms. Besides, it described the technique for discovering and developing possible AVPs based on their targets, as well as the significance of using nanotechnology for their efficient delivery against SARS-CoV-2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9676828 | PMC |
http://dx.doi.org/10.1007/s43440-022-00432-6 | DOI Listing |
JMIR Res Protoc
January 2025
Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
Background: To successfully design, develop, implement, and deliver digital health services that provide value, they should be cocreated with patients. However, occasionally, the value may also be codestructed. In the field of health care, the concepts of value cocreation and codestruction still need to be better established within emerging digital health services.
View Article and Find Full Text PDFJ Clin Oncol
January 2025
The Kinghorn Cancer Centre, St Vincent's Hospital, Sydney, NSW, Australia.
Purpose: Over the past 15 years, the landscape of early phase clinical trials (EPCTs) has undergone a remarkable expansion in both quantity and intricacy. The proliferation of sites, trials, sponsors, and contract research organizations has surged exponentially, marking a significant shift in research conduct. However, EPCT operations suffer from numerous inefficiencies, such as cumbersome start-up processes, which are particularly critical when drug safety and the recommended phase II dose need to be established in a timely manner.
View Article and Find Full Text PDFBioconjug Chem
January 2025
Department of Biochemistry, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, ul. Lwowska 1, 87-100 Torun, Poland.
l-Asparaginase (l-ASNase) catalyzes the hydrolysis of l-asparagine, leading to its depletion and subsequent effects on the cellular proliferation and survival. In contrast to normal cells, malignant cells that lack asparagine synthase are extremely susceptible to asparagine deficiency. l-ASNase has been successfully employed in treating pediatric leukemias and non-Hodgkin lymphomas; however, its usage in adult patients and other types of cancer is limited due to significant side effects and drug resistance.
View Article and Find Full Text PDFOrg Lett
January 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
Dehydrophenylalanine has a characteristic unsaturated double bond that makes it indispensable in the context of peptides and proteins. In this study, we report the Pd-catalyzed C(sp)-H arylation of dehydroalanine-containing peptides with arylthianthrenium salts under mild and base free conditions, which provides efficient access to dehydrophenylalanine-containing peptides. This approach enables the efficient coupling of different drug scaffolds and bioactive molecules to the peptides.
View Article and Find Full Text PDFJ Med Syst
January 2025
Department of Computing, University of North Florida, 1 UNF Dr., Jacksonville, 32246, FL, USA.
The "no-show" problem in healthcare refers to the prevalent phenomenon where patients schedule appointments with healthcare providers but fail to attend them without prior cancellation or rescheduling. In addressing this issue, our study delves into a multivariate analysis over a five-year period involving 21,969 patients. Our study introduces a predictive model framework that offers a holistic approach to managing the no-show problem in healthcare, incorporating elements into the objective function that address not only the accurate prediction of no-shows but also the management of service capacity, overbooking, and idle resource allocation resulting from mispredictions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!