Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Chemotherapy-resistant acute myeloid leukemia (AML), frequently driven by clonal evolution, has a dismal prognosis. A genome-wide CRISPR knockout screen investigating resistance to doxorubicin and cytarabine (Dox/AraC) in human AML cell lines identified gene knockouts involving AraC metabolism and genes that regulate cell cycle arrest (cyclin dependent kinase inhibitor 2A (CDKN2A), checkpoint kinase 2 (CHEK2) and TP53) as contributing to resistance. In human AML cohorts, reduced expression of CDKN2A conferred inferior overall survival and CDKN2A downregulation occurred at relapse in paired diagnosis-relapse samples, validating its clinical relevance. Therapeutically targeting the GS cell cycle restriction point (with CDK4/6 inhibitor, palbociclib and KAT6A inhibitor, WM-1119, to upregulate CDKN2A) synergized with chemotherapy. Additionally, direct promotion of apoptosis with venetoclax, showed substantial synergy with chemotherapy, overcoming resistance mediated by impaired cell cycle arrest. Altogether, we identify defective cell cycle arrest as a clinically relevant contributor to chemoresistance and identify rationally designed therapeutic combinations that enhance response in AML, potentially circumventing chemoresistance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41375-022-01755-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!