Objective: Physical activity has been shown to reduce the risk of CVD mortality in large-cohort longitudinal studies; however, the mechanisms underpinning the beneficial effects of exercise remain incompletely understood. Emerging data suggest that the risk reducing effect of exercise extends beyond changes in traditional CVD risk factors alone and involves alterations in immunity and reductions in inflammatory mediator production. Our study aimed to determine whether exercise-enhanced production of proresolving lipid mediators contribute to alterations in macrophage intermediary metabolism, which may contribute to the anti-inflammatory effects of exercise.

Methods: Changes in lipid mediators and macrophage metabolism were assessed in C57Bl/6 mice following 4 weeks of voluntary exercise training. To investigate whether exercise-stimulated upregulation of specialized proresolving lipid mediators (SPMs) was sufficient to enhance mitochondrial respiration, both macrophages from control mice and human donors were incubated in vitro with SPMs and mitochondrial respiratory parameters were measured using extracellular flux analysis. Compound-C, an ATP-competitive inhibitor of AMPK kinase activity, was used to investigate the role of AMPK activity in SPM-induced mitochondrial metabolism. To assess the in vivo contribution of 5-lipoxygenase in AMPK activation and exercise-induced mitochondrial metabolism in macrophages, Alox5 mice were also subjected to exercise training.

Results: Four weeks of exercise training enhanced proresolving lipid mediator production, while also stimulating the catabolism of inflammatory lipid mediators (e.g., leukotrienes and prostaglandins). This shift in lipid mediator balance following exercise was associated with increased macrophage mitochondrial metabolism. We also find that treating human and murine macrophages in vitro with proresolving lipid mediators enhances mitochondrial respiratory parameters. The proresolving lipid mediators RvD1, RvE1, and MaR1, but not RvD2, stimulated mitochondrial respiration through an AMPK-dependent signaling mechanism. Additionally, in a subset of macrophages, exercise-induced mitochondrial activity in vivo was dependent upon 5-lipoxygenase activity.

Conclusion: Collectively, these results suggest that exercise stimulates proresolving lipid mediator biosynthesis and mitochondrial metabolism in macrophages via AMPK, which might contribute to the anti-inflammatory and CVD risk reducing effect of exercise.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9719872PMC
http://dx.doi.org/10.1016/j.molmet.2022.101637DOI Listing

Publication Analysis

Top Keywords

proresolving lipid
24
lipid mediators
24
mitochondrial metabolism
16
mitochondrial respiration
12
lipid mediator
12
mitochondrial
10
lipid
9
specialized proresolving
8
respiration macrophages
8
exercise
8

Similar Publications

Exploring the Unique Role of Specialized Pro-Resolving Mediators in Cancer Therapeutics.

Prostaglandins Other Lipid Mediat

December 2024

Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215.

Unresolved chronic inflammation, a hallmark of cancer, promotes tumor growth and metastasis in various cancer types. In contrast to blocking inflammation, stimulation of resolution of inflammation is an entirely novel approach to "resolve" inflammation. Resolution of inflammation mechanisms in cancer includes clearance of tumor debris, counter-regulation of pro-inflammatory eicosanoids and cytokines, and suppression of leukocyte infiltration.

View Article and Find Full Text PDF

Asthma, is a common, significant and diverse condition marked by persistent airway inflammation, with a major impact on human health worldwide. The predisposing factors for asthma are complex and widespread. The beneficial effects of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) in asthma have increasingly attracted attention recently.

View Article and Find Full Text PDF

Residual inflammation drives atherogenesis to atherosclerosis and myocardial infarction, which triggers acute inflammation. In preclinical studies, polyunsaturated fatty acids-derived specialized pro-resolving mediators (SPMs) have been shown to promote recovery after MI, in contrast to pro-inflammatory lipid mediators (PIMs). However, the dynamic changes of lipid mediators after ST-elevation myocardial infarction (STEMI), particularly after percutaneous coronary intervention (PCI) and respective gene transcripts, are poorly understood.

View Article and Find Full Text PDF

A high seizure burden increases brain concentrations of specialized pro-resolving mediators in the Scn1a mouse model of Dravet syndrome.

Prostaglandins Other Lipid Mediat

December 2024

Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2050, Australia; Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, NSW 2050, Australia; Brain and Mind Centre, The University of Sydney, NSW 2050, Australia. Electronic address:

Objective: Dravet syndrome is a severe, intractable epilepsy in which 80 % of patients have a de novo mutation in the gene SCN1A. We recently reported that a high seizure burden increased hippocampal concentrations of an array of pro-inflammatory prostaglandins in the Scn1a mouse model of Dravet syndrome. This raised the possibility that a high seizure burden might also trigger the accumulation of specialized pro-resolving mediators that facilitate the resolution of neuroinflammation and brain repair.

View Article and Find Full Text PDF

Purpose: Maresin 1 (MaR1) is a specialized pro-resolving mediator with anti-inflammatory properties that promotes tissue repair. This study aims to investigate the molecular involvement of MaR1 in protecting against sepsis-induced acute liver injury (SI-ALI).

Methods: In vivo, a murine SI-ALI model was established using the cecal ligation and puncture (CLP) paradigm, providing a system in which the mechanistic functions of MaR1 could be tested.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!