Glucagon receptor antagonism impairs and glucagon receptor agonism enhances triglycerides metabolism in mice.

Mol Metab

Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Biochemistry, Bispebjerg & Frederiksberg Hospitals, University of Copenhagen, 2400 Bispebjerg, Denmark. Electronic address:

Published: December 2022

Objective: Treatment with glucagon receptor antagonists (GRAs) reduces blood glucose but causes dyslipidemia and accumulation of fat in the liver. We investigated the acute and chronic effects of glucagon on lipid metabolism in mice.

Methods: Chronic effects of glucagon receptor signaling on lipid metabolism were studied using oral lipid tolerance tests (OLTTs) in overnight fasted glucagon receptor knockout (Gcgr) mice, and in C57Bl/6JRj mice treated with a glucagon receptor antibody (GCGR Ab) or a long-acting glucagon analogue (GCGA) for eight weeks. Following treatment, liver tissue was harvested for RNA-sequencing and triglyceride measurements. Acute effects were studied in C57Bl/6JRj mice treated with a GRA or GCGA 1 h or immediately before OLTTs, respectively. Direct effects of glucagon on hepatic lipolysis were studied using isolated perfused mouse liver preparations. To investigate potential effects of GCGA and GRA on gastric emptying, paracetamol was, in separate experiments, administered immediately before OLTTs.

Results: Plasma triglyceride concentrations increased 2-fold in Gcgr mice compared to their wild-type littermates during the OLTT (P = 0.001). Chronic treatment with GCGR Ab increased, whereas GCGA treatment decreased, plasma triglyceride concentrations during OLTTs (P < 0.05). Genes involved in lipid metabolism were upregulated upon GCGR Ab treatment while GCGA treatment had opposite effects. Acute GRA and GCGA treatment, respectively, increased (P = 0.02) and decreased (P = 0.003) plasma triglyceride concentrations during OLTTs. Glucagon stimulated hepatic lipolysis, evident by an increase in free fatty acid concentrations in the effluent from perfused mouse livers. In line with this, GCGR Ab treatment increased, while GCGA treatment decreased, liver triglyceride concentrations. The effects of glucagon appeared independent of changes in gastric emptying of paracetamol.

Conclusions: Glucagon receptor signaling regulates triglyceride metabolism, both chronically and acutely, in mice. These data expand glucagon´s biological role and implicate that intact glucagon signaling is important for lipid metabolism. Glucagon agonism may have beneficial effects on hepatic and peripheral triglyceride metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9706156PMC
http://dx.doi.org/10.1016/j.molmet.2022.101639DOI Listing

Publication Analysis

Top Keywords

glucagon receptor
24
effects glucagon
12
glucagon
9
chronic effects
8
lipid metabolism
8
gcgr mice
8
c57bl/6jrj mice
8
mice treated
8
plasma triglyceride
8
triglyceride concentrations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!