A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Highly-efficient molten NaOH-KOH for organochlorine destruction: Performance and mechanism. | LitMetric

Highly-efficient molten NaOH-KOH for organochlorine destruction: Performance and mechanism.

Environ Res

College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.

Published: January 2023

Molten salt has been increasingly acknowledged to be useful in the destruction of chlorine-containing organic wastes (COWs), e.g., organochlorine. However, the operational temperatures are usually high, and local structure and thermodynamic property of the molten salt remain largely unclear. In this study, novel molten NaOH-KOH is developed for organochlorine destruction, and its eutectic point can be lowered to 453 K with 1:1 mol ratio of NaOH to KOH. Further experiment shows that this molten NaOH-KOH is highly-efficient towards the destructions of both trichlorobenzene and dichlorophenol, acquiring the final dechlorination efficiencies as 88.2% and 94.1%, respectively. The organochlorine destruction and chloride salt enrichment are verified by fourier-transform infrared spectrometer. Molten NaOH-KOH not only eliminates the C-Cl and CC bonds, but also traps generated CO, other acidic gases, and possibly particulate matters as a result of the high surface area and high viscosity. This makes it possibly advantageous over incineration for organic waste destruction for carbon neutrality. To sufficiently reveal the inherent mechanism for the temperature dependent performance, molecular dynamics simulation is further adopted. Results show that the radial distance between ions increases with temperature, causing larger molar volume and lower resistance to shear deformation. Moreover, thermal expansion coefficient, specific heat capacity, and ion self-diffusion coefficient of the molten NaOH-KOH are found to increase linearly with temperature. All these microscopic alterations contribute to the organochlorine destruction. This study benefits to develop highly-efficient molten system for COWs treatment via a low-carbon approach.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2022.114815DOI Listing

Publication Analysis

Top Keywords

molten naoh-koh
20
organochlorine destruction
16
highly-efficient molten
8
molten salt
8
molten
7
destruction
6
naoh-koh
5
organochlorine
5
naoh-koh organochlorine
4
destruction performance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!