Biomarkers-based QCM-biosensors are suitable tools for the label-free detection of infectious diseases. In the current study, a QCM-biosensor was developed for the detection of HBsAg. Briefly, anti-HBsAg antibodies were covalently bound to the primary amines after PEI and thiolated-PEI surface modifications of gold-electrode. After RSM optimization, the statistical analysis revealed no significant difference between the immobilization yields of modified layers. Therefore, the PEI-modified QCM-biosensor was selected for further analysis. The PEI-surface was evaluated by FESEM, AFM, ATR-FTIR, and CA measurement. The surface hydrophilicity and its roughness were increased after PEI-coating. Also, FTIR confirmed the PEI-layering on the gold-surface. RSM optimization increased the antibody immobilization yield up to 80%. The QCM-biosensor showed noteworthy results with a wide dynamic range of 1-1 × 10 ng/mL, LOD of 3.14 ng/mL, LOQ of 9.52 ng/mL, and detection capability in human-sera, which were comparable with the ELISA. The mean accuracy of the QCM-biosensor was obtained at 91% when measured by the spike recovery test using human-sera. The biosensor was completely regenerated using 50 mM NaOH and 1% SDS. The benefits provided by the developed biosensor such as broad dynamic range, sensitivity, selectivity, stability, regenerate ability, and low cost suggest its potential application for the non-invasive and timely monitoring of HBV-biomarker.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2022.114981 | DOI Listing |
J Food Sci Technol
February 2025
Dept. of Food Processing Tech. A. D. Patel Institute of Technology, Charutar Vidya Mandal University, New Vallabh Vidyanagar, Anand, Gujarat India.
Unlabelled: A huge amount of fruits and vegetables is being produced and processed in India and therefore the waste is also generated in high quantities. These wastes are good sources of vitamins, enzymes, cellulose, and many other essential compounds. The non-utilization of these bio-wastes leads to economic loss and also environmental problems.
View Article and Find Full Text PDFACS Omega
January 2025
Federal University of Espírito Santo, Av Marechal Campos 1468, Vitória, ES 29.040 090, Brazil.
Monodisperse and colloidally stable magnetic iron oxide nanoparticles have been developed for diverse biotechnology applications. Although promising for the adsorption of organic molecules, the low density of adsorption sites in these nanoparticles has been a significant challenge. In this study, an optimized factorial design with response surface methodology (RSM) was employed to produce small Superparamagnetic Iron Oxide Nanoparticles (SPIONs) stabilized with tetraethoxysilane (TEOS).
View Article and Find Full Text PDFHeliyon
January 2025
Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 46117, Liberec, Czech Republic.
Droplet coalescence in microchannels is a complex phenomenon influenced by various parameters such as droplet size, velocity, liquid surface tension, and droplet-droplet spacing. In this study, we thoroughly investigate the impact of these control parameters on droplet coalescence dynamics within a sudden expansion microchannel using two distinct numerical methods. Initially, we employ the boundary element method to solve the Brinkman integral equation, providing detailed insights into the underlying physics of droplet coalescence.
View Article and Find Full Text PDFUltrason Sonochem
January 2025
School of Traditional Chinese Medicine and Food Engineering, Shanxi Provincial Key Laboratory of Traditional Chinese Medicine Processing, Shanxi University of Chinese Medicine, Jinzhong 030619, PR China. Electronic address:
Polysaccharides from the dried tuber of Typhonium giganteum Engl. (TGEPs) were obtained by utilizing ultrasonic-assisted extraction (UAE) as the extraction method. The determination of optimal process parameters for the UAE of TGEPs (TGEP-U) was accomplished through the application of response surface methodology (RSM).
View Article and Find Full Text PDFJ Chromatogr A
January 2025
College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China. Electronic address:
α-Terpineol and 1,8-cineole are two important compounds in essential oils. This study developed an efficient method to recover α-terpineol from model oil (MO) based on association extraction by in situ formations of deep eutectic solvent (DES) between α-terpineol and some quaternary ammonium salts (QASs) by hydrogen-bond (HB) interaction. Such interaction could be broken almost completely by the introduction of water, due to the stronger HB interaction between water and QASs, which could release α-terpineol by liquid-liquid separation and save the organic solvents consumption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!