Monitoring neurochemical signaling across time scales is critical to understanding how brains encode and store information. Flexible (vs stiff) devices have been shown to improve monitoring, particularly over longer times, by reducing tissue damage and immunological responses. Here, we report our initial steps toward developing flexible and implantable neuroprobes with aptamer-field-effect transistor (FET) biosensors for neurotransmitter monitoring. A high-throughput process was developed to fabricate thin, flexible polyimide probes using microelectromechanical-system (MEMS) technologies, where 150 flexible probes were fabricated on each 4 in. Si wafer. Probes were 150 μm wide and 7 μm thick with two FETs per tip. The bending stiffness was 1.2 × 10 N·m. Semiconductor thin films (3 nm InO) were functionalized with DNA aptamers for target recognition, which produces aptamer conformational rearrangements detected via changes in FET conductance. Flexible aptamer-FET neuroprobes detected serotonin at femtomolar concentrations in high-ionic strength artificial cerebrospinal fluid. A straightforward implantation process was developed, where microfabricated Si carrier devices assisted with implantation such that flexible neuroprobes detected physiological relevant serotonin in a tissue-hydrogel brain mimic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9982941 | PMC |
http://dx.doi.org/10.1021/acssensors.2c01909 | DOI Listing |
Knee
December 2024
Orthopedic Surgery and Traumatology, Hospital Clínic de Barcelona, Barcelona, Spain.
Distal femoral replacement (DFR) with megaprostheses is a salvage revision total knee arthroplasty (rTKA) procedure indicated in cases with massive bone defects in the distal femur. As long as these implants achieve fixation only in the diaphysis, the high aseptic loosening rate reported in some series is probably related to a lack of rotational stability. Two patients with extensive distal femoral bone defects with preservation of the metaphyseal-diaphyseal junction underwent rTKA.
View Article and Find Full Text PDFPhys Eng Sci Med
January 2025
School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100191, China.
Extracorporeal shock wave therapy (ESWT) achieves its therapeutic purpose mainly through the biological effects produced by the interaction of shock waves with tissues, and the accurate measurement and calculation of the mechanical parameters of shock waves in tissues are of great significance in formulating the therapeutic strategy and evaluating the therapeutic effect. This study utilizes the approach of implanting flexible polyvinylidene fluoride (PVDF) vibration sensors inside the tissue-mimicking phantom of various thicknesses to capture waveforms at different depths during the impact process in real time. Parameters including positive and negative pressure changes (P, P), pulse wave rise time ([Formula: see text]), and energy flux density (EFD) are calculated, and frequency spectrum analysis of the waveforms is conducted.
View Article and Find Full Text PDFJMIR Med Educ
January 2025
Department of Anesthesiology, Washington University School of Medicine, 660 S Euclid Avenue, Saint Louis, MO, United States, 1 3149565620.
Background: Mentoring, advising, and coaching are essential components of resident education and professional development. Despite their importance, there is limited literature exploring how anesthesiology faculty perceive these practices and their role in supporting residents.
Objective: This study aims to investigate anesthesiology faculty perspectives on the significance, implantation strategies, and challenges associated with mentorship, advising, and coaching in resident education.
J Mech Behav Biomed Mater
January 2025
Laboratory for Biomechanics and Biomaterials (LBB), Department of Orthopedic Surgery, Hannover Medical School, Anna-von-Borries-Strasse 1-7, 30625, Hannover, Germany. Electronic address:
In hip arthroplasty, relative movements between the femoral stem and bone can lead to implant loosening, resulting in extensive bone loss. Acoustic emission (AE) analysis is a promising technique for a nondestructive and noninvasive detection of these relative movements. To develop such a detection method, in vitro investigations using piezoelectric AE sensors on implant stems in artificial or human femora are required to characterize the AE signals induced by loosening.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA.
Wearable and implantable bioelectronics that can interface for extended periods with highly mobile organs and tissues across a broad pH range would be useful for various applications in basic biomedical research and clinical medicine. The encapsulation of these systems, however, presents a major challenge, as such devices require superior barrier performance against water and ion penetration in challenging pH environments while also maintaining flexibility and stretchability to match the physical properties of the surrounding tissue. Current encapsulation materials are often limited to near-neutral pH conditions, restricting their application range.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!