Recent atomic physics experiments and numerical works have reported complementary signatures of the emergence of a topological quantum spin liquid in models with blockade interactions. However, the specific mechanism stabilizing such a phase remains unclear. Here, we introduce an exact relation between an Ising-Higgs lattice gauge theory on the kagome lattice and blockaded models on Ruby lattices. This relation elucidates the origin of previously observed topological spin liquids by directly linking the latter to a deconfined phase of a solvable gauge theory. By means of exact diagonalization and unbiased quantum Monte Carlo simulations, we show that the deconfined phases extend in a broad region of the parameter space; these states are characterized by a large ground state overlap with resonating valence bond wave functions. These blockaded models include both creation or annihilation and hopping dynamics, and can be experimentally realized with Rydberg-dressed atoms, offering novel and controllable platforms for the engineering and characterization of spin liquid states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.129.195301 | DOI Listing |
Adv Mater
January 2025
State Key Laboratory for Manufacturing Systems Engineering, Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
Large low-field magnetoresistance (LFMR, < 1 T), related to the spin-disorder scattering or spin-polarized tunneling at boundaries of polycrystalline manganates, holds considerable promise for the development of low-power and ultrafast magnetic devices. However, achieving significant LFMR typically necessitates extremely low temperatures due to diminishing spin polarization as temperature rises. To address this challenge, one strategy involves incorporating Ruddlesden-Popper structures (ABO):AO, which are layered derivatives of perovskite structure capable of potentially inducing heightened magnetic fluctuations at higher temperatures.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division (PSE), Thuwal 23955-6900, Saudi Arabia.
Employing density functional theory for ground state quantum mechanical calculations and the non-equilibrium Green's function method for transport calculations, we investigate the potential of CdS, ZnS, CdZnS, and ZnCdS as tunnel barriers in magnetic tunnel junctions for spintronics. Based on the finding that the valence band edges of these semiconductors are dominated by p orbitals and the conduction band edges by s orbitals, we show that symmetry filtering of the Bloch states in magnetic tunnel junctions with Fe electrodes results in high tunneling magnetoresistances and high spin-polarized current (up to two orders of magnitude higher than in the case of the Fe/MgO/Fe magnetic tunnel junction).
View Article and Find Full Text PDFPhys Rev B
January 2018
Quantum Electromagnetics Division, National Institute of Standards and Technology, Boulder, CO 80305, U.S.A.
Understanding the evolution of spin-orbit torque (SOT) with increasing heavy-metal thickness in ferromagnet/normal metal (FM/NM) bilayers is critical for the development of magnetic memory based on SOT. However, several experiments have revealed an apparent discrepancy between damping enhancement and damping-like SOT regarding their dependence on NM thickness. Here, using linewidth and phase-resolved amplitude analysis of vector network analyzer ferromagnetic resonance (VNA-FMR) measurements, we simultaneously extract damping enhancement and both field-like and damping-like inverse SOT in NiFe/Pt bilayers as a function of Pt thickness.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck,Innrain 80-82, 6020 Innsbruck, Austria.
Cu-doped LaCu Mn O perovskites have been used as a model system for a joint experimental and theoretical assessment of the influence of the Cu doping level on the structural, electronic, and magnetic properties. The different Cu-doped phases LaCuMnO (LCM37), LaCuMnO (LCM55), and LaCuMnO (LCM73) including the respective Cu- and Mn-free benchmark materials LaCuO (LC) and LaMnO (LM) have been studied by magnetization measurements and electronic paramagnetic resonance. Ferromagnetic behavior was detected for pure LM and all Cu-doped perovskites, whereas antiferromagnetic behavior was revealed for LaCuO.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC - Universidad de Zaragoza, Plaza San Francisco s/n, Zaragoza 50009, Spain.
A strategy toward the realization of a quantum spin processor involves the coupling of spin qubits and qudits to photons within superconducting resonators. To enable the realization of such hybrid architecture, here we first explore the design of a chip with multiple lumped-element LC superconducting resonators optimized for their coupling to distinct transitions of a vanadyl porphyrin electronuclear qudit. The controlled integration of the vanadyl qudit onto the superconducting device, both in terms of number and orientation, is then attained using the formation of nanosheets of a 2D framework built on the vanadyl qudit as a node.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!