Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study investigates the formation of amorphous tetravalent metal hydroxides, M(OH), based on the structural analysis by small- and wide-angle X-ray scattering (SWAXS) and on the electrical potential charge near the surface of M(OH) particles. The amorphous zirconium hydroxide solid phases that aged in NaCl and CaCl solutions at 25 °C exhibited a hierarchical structure consisting of primary particles of a few nanometers in size and their aggregates more than 100 nm in size. The SWAXS profiles suggested that the size of the primary particles depends on the ionic strength and electrolytes in the sample solutions. The smaller size of the primary particles observed in solutions with higher ionic strength can be explained by the thinner electrical double layer. Additionally, we focused on the ζ potentials of M(OH) suspensions in NaCl, NaNO, and CaCl solutions. With the aid of reference systems of metal oxides, MO, it was found that the ζ potentials were well interpreted by a traditional surface ionization and complexation model, and the size distributions of large aggregates were explained by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory with the ζ potential values. The present study suggests the formation mechanism of amorphous metal hydroxides through a combination of structural analysis and investigation of electrical potentials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.2c02081 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!