Background: Flow cytometric analysis of peripheral blood neutrophil myeloperoxidase expression is accurate in ruling out myelodyplastic syndromes (MDS) but might not be suitable for implementation in busy clinical laboratories. We aimed to simplify the original gating strategy and examine its accuracy.
Methods: Using the individual data from 62 consecutive participants enrolled in a prospective validation study, we assessed the agreement in intra-individual robust coefficient of variation (RCV) of peripheral blood neutrophil myeloperoxidase expression and compared diagnostic accuracy between the simplified and original gating strategies.
Results: Cytomorphological evaluation of bone marrow aspirate confirmed MDS in 23 patients (prevalence, 37%), unconfirmed MDS in 32 patients (52%), and was uninterpretable in 7 patients (11%). Median intra-individual RCV for simplified and original gating strategies were 30.7% (range, 24.7-54.4) and 30.6% (range, 24.7-54.1), with intra-class correlation coefficient quantifying absolute agreement equal to 1.00 (95% confidence interval [CI], 0.99 to 1.00). The areas under the receiver operating characteristic (ROC) curves were 0.93 (95% CI, 0.82-0.98) and 0.92 (95% CI, 0.82-0.98), respectively (P = .32). Using simplified or original gating strategy, intra-individual RCV values lower than a pre-specified threshold of 30.0% ruled out MDS for 35% (19 of 55) patients, with both sensitivity and negative predictive value estimates of 100%.
Conclusions: The simplified gating strategy performs as well as the original one for ruling out MDS and has the potential to save time and reduce resource utilization. Yet, prospective validation of the simplified gating strategy is warranted before its adoption in routine.
Trial Registration: ClinicalTrials.gov Identifier: NCT03363399 (First posted on December 6, 2017).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9674135 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276095 | PLOS |
ACS Nano
January 2025
Department of Physics and Astronomy, University of Manitoba, Winnipeg R3T 2N2, Canada.
Theory and simulations are used to demonstrate implementation of a variational Bayes algorithm called "active inference" in interacting arrays of nanomagnetic elements. The algorithm requires stochastic elements, and a simplified model based on a magnetic artificial spin ice geometry is used to illustrate how nanomagnets can generate the required random dynamics. Examples of tracking and PID control are demonstrated and shown to be consistent with the original stochastic differential equation formulation of active inference.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2025
Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, USA. Electronic address:
Background And Objective: Deformable registration of multimodal brain magnetic resonance images presents significant challenges, primarily due to substantial structural variations between subjects and pronounced differences in appearance across imaging modalities.
Methods: Here, we propose to symmetrically register images from two modalities based on appearance residuals from one modality to another. Computed with simple subtraction between modalities, the appearance residuals enhance structural details and form a common representation for simplifying multimodal deformable registration.
Mol Biol Rep
January 2025
Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.
View Article and Find Full Text PDFPsychiatry Res
January 2025
Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510630, China. Electronic address:
Background: Early screening for autism spectrum disorder (ASD) is crucial, yet current assessment tools in Chinese primary child care are limited in efficacy.
Objective: This study aims to employ machine learning algorithms to identify key indicators from the 20-item Modified Checklist for Autism in Toddlers, revised (M-CHAT-R) combining with ASD-related sociodemographic and environmental factors, to distinguish ASD from typically developing children.
Methods: Data from our prior validation study of the Chinese M-CHAT-R (August 2016-March 2017, n = 6,049 toddlers) were reviewed.
Biomed Phys Eng Express
January 2025
Department of Ophthalmology, Hospital Universitario de Canarias, Carretera Ofra S/N, La Laguna, Santa Cruz de Tenerife, 38320, SPAIN.
This paper systematically evaluates saliency methods as explainability tools for convolutional neural networks trained to diagnose glaucoma using simplified eye fundus images that contain only disc and cup outlines. These simplified images, a methodological novelty, were used to relate features highlighted in the saliency maps to the geometrical clues that experts consider in glaucoma diagnosis. Despite their simplicity, these images retained sufficient information for accurate classification, with balanced accuracies ranging from 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!