Lantibiotics are post-translationally modified antibiotic peptides with lanthionine thioether bridges that represent potential alternatives to conventional antibiotics. The lantibiotic pseudomycoicidin is produced by Bacillus pseudomycoides DSM 12442 and is effective against many Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus. While prior work demonstrated that pseudomycoicidin possesses one disulfide bridge and four thioether bridges, the ring topology has so far remained unclear. Here, we analyzed several pseudomycoicidin analogues that are affected in ring formation via MALDI-TOF-MS and tandem mass spectrometry with regard to their dehydration and fragmentation patterns, respectively. As a result, we propose a bridging pattern involving Thr8 and Cys13, Thr10 and Cys16, Ser18 and Cys21, and Ser20 and Cys26, thus, forming two double ring systems. Additionally, we localized the disulfide bridge to connect Cys3 and Cys7 and, therefore, fully elucidated the bridging pattern of pseudomycoicidin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10107895PMC
http://dx.doi.org/10.1002/cbic.202200540DOI Listing

Publication Analysis

Top Keywords

bridging pattern
12
lantibiotic pseudomycoicidin
8
thioether bridges
8
disulfide bridge
8
pseudomycoicidin
5
elucidation bridging
4
pattern lantibiotic
4
pseudomycoicidin lantibiotics
4
lantibiotics post-translationally
4
post-translationally modified
4

Similar Publications

Background: Depression and anxiety are commonly experienced by people with chronic kidney disease (CKD). This study aimed to evaluate person- and service-level factors associated with depression and anxiety symptoms. We sought to also understand utilisation of mental health treatments and preferences for future psychological support.

View Article and Find Full Text PDF

Human-machine interaction has emerged as a revolutionary and transformative technology, bridging the gap between human and machine. Gesture recognition, capitalizing on the inherent dexterity of human hands, plays a crucial role in human-machine interaction. However, existing systems often struggle to meet user expectations in terms of comfort, wearability, and seamless daily integration.

View Article and Find Full Text PDF

An Innovative Linear Wireless Sensor Network Reliability Evaluation Algorithm.

Sensors (Basel)

January 2025

College of Information Science and Engineering, Shenyang University of Technology, Shenyang 110167, China.

In recent years, wireless sensor networks (WSNs) have become a crucial technology for infrastructure monitoring. To ensure the reliability of monitoring services, evaluating the network's reliability is particularly important. Sensor nodes are distributed linearly when monitoring linear structures, such as railway bridges, forming what is known as a Linear Wireless Sensor Network (LWSN).

View Article and Find Full Text PDF

Autonomous driving has demonstrated impressive driving capabilities, with behavior decision-making playing a crucial role as a bridge between perception and control. Imitation Learning (IL) and Reinforcement Learning (RL) have introduced innovative approaches to behavior decision-making in autonomous driving, but challenges remain. On one hand, RL's policy networks often lack sufficient reasoning ability to make optimal decisions in highly complex and stochastic environments.

View Article and Find Full Text PDF

AI-Enhanced IoT System for Assessing Bridge Deflection in Drive-By Conditions.

Sensors (Basel)

December 2024

Department of Mechanical Engineering, Politecnico di Milano, Via Privata Giuseppe la Masa 1, 20156 Milano, Italy.

The increasing traffic on roads poses a significant challenge to the structural integrity of bridges and viaducts. Indirect structural monitoring offers a cost-effective and efficient solution for monitoring multiple infrastructures. The presented work aims to explore new sensing strategies based on digital MEMS sensors integrated into an intelligent IoT infrastructure to predict the bridge deflection behaviour for indirect Bridge Structural Health Monitoring purposes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!