Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The cardiomyocytes pyroptosis and bone marrow-derived mesenchymal stem cells have been well considered as novel therapies to attenuate myocardial ischemia/reperfusion injury, however, the relationship has not yet been determined.
Objective: We aim to evaluate whether pre-treatment bone marrow-derived mesenchymal stem cells protect against myocardial ischemia/reperfusion injury by repressing cardiomyocytes pyroptosis, as well as to further elucidate the potential mechanisms.
Methods: Cardiomyocytes were treated with hypoxia, followed by reoxygenation to mimic myocardial ischemia/reperfusion injury. Pre-treatment bone marrow-derived mesenchymal stem cells or their exosomes were co-cultured with cardiomyocytes following hypoxia/reoxygenation. Cell Counting Kit-8 assay was used to determine cell viability. Reactive oxygen species production was determined by dihydroethidium stain. Enzyme-linked immunosorbent assays were used to detect IL-1β and IL-18.
Results: We observed that Irisin pre-treatment bone marrow-derived mesenchymal stem cells protected cardiomyocytes against hypoxia/reoxygenation-induced injuries. The underlying molecular mechanism was further identified. Irisin-BMMSCs were found to secrete exosomes, which repressed cardiomyocytes pyroptosis and oxidative stress response by suppressing NLRP3 under hypoxia/reoxygenation conditions.
Conclusion: Based on our findings, we revealed a promising target that exosomes derived from bone marrow-derived mesenchymal stem cells with Irisin treatment to elevate the therapeutic benefits for hypoxia/ reoxygenation injury.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1574888X18666221117111829 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!