A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Absorption of charged particles in perfectly matched layers by optimal damping of the deposited current. | LitMetric

Perfectly matched layers (PMLs) are widely used in particle-in-cell simulations, in order to absorb electromagnetic waves that propagate out of the simulation domain. However, when charged particles cross the interface between the simulation domain and the PMLs, a number of numerical artifacts can arise. In order to mitigate these artifacts, we introduce a PML algorithm whereby the current deposited by the macroparticles in the PML is damped by an analytically derived optimal coefficient. The benefits of this algorithm are illustrated in practical simulations. In particular, it is shown that this algorithm is well suited for particles exiting the box in near-normal incidence, in the sense that the fields behave as if the exiting particle is propagating in an infinite vacuum.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.106.045306DOI Listing

Publication Analysis

Top Keywords

charged particles
8
perfectly matched
8
matched layers
8
simulation domain
8
absorption charged
4
particles perfectly
4
layers optimal
4
optimal damping
4
damping deposited
4
deposited current
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!