Transverse dichotomic ratchet in a two-dimensional corrugated channel.

Phys Rev E

Institute of Physics, Slovak Academy of Sciences, Dúbravska cesta 9, 84511, Bratislava, Slovakia.

Published: October 2022

A particle diffusing in a two-dimensional channel of varying width h(x) is considered. It is driven by a force of constant magnitude f, but random orientation across the channel. We suggest the projection technique to study the ratchet effect appearing in this system. Reducing the transverse coordinate, as well as the orientation of the force in the full-dimensional Fokker-Planck equation, we arrive at the generalized Fick-Jacobs equation, describing dynamics of the system in the longitudinal coordinate x only. The additional effective potential -γ(x), calculated within the mapping procedure, exhibits an increasing or decreasing part in the channel shaped by an asymmetric periodic h(x), which determines the appearing ratchet current. As shown on a specific example, random driving in the transverse direction is much more effective than that in the longitudinal direction, at least for quickly flipping orientation of the force. Also, the transverse and the longitudinal driving push the rectified current in opposite directions along the same channel.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.106.044126DOI Listing

Publication Analysis

Top Keywords

orientation force
8
channel
5
transverse
4
transverse dichotomic
4
dichotomic ratchet
4
ratchet two-dimensional
4
two-dimensional corrugated
4
corrugated channel
4
channel particle
4
particle diffusing
4

Similar Publications

Active fluids are driven out of thermodynamic equilibrium by internally generated forces, causing complex patterns of motion. Even when both the forces and motion are measurable, it is not yet possible to relate the two, because the sources of energy injection and dissipation are often unclear. Here, we study how energy is transferred by developing a method to measure viscosity from the shear stresses and strain rates within an epithelial cell monolayer.

View Article and Find Full Text PDF

3D printing of biological tooth with multiple ordered hierarchical structures.

Mater Today Bio

February 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China.

Natural teeth fulfill functional demands by their heterogeneity. The composition and hydroxyapatite (HAp) nanostructured orientation of enamel differ from those of dentin. However, mimicking analogous materials still exhibit a significant challenge.

View Article and Find Full Text PDF

Fabrication of a micropatterned shape-memory polymer patch with L-DOPA for tendon regeneration.

Biomater Sci

January 2025

Department of Nanobiomedical Science & BK21 FOUR micropatterned shape-memory NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.

A scaffold design for tendon regeneration has been proposed, which mimics the microstructural features of tendons and provides appropriate mechanical properties. We synthesized a temperature-triggered shape-memory polymer (SMP) using the ring-opening polymerization of polycaprolactone (PCL) with polyethylene glycol (PEG) as a macroinitiator. We fabricated a micropatterned patch using SMP capillary force lithography, which mimicked a native tendon, for providing physical cues and guiding effects.

View Article and Find Full Text PDF

Cancer-related deaths primarily occur due to metastasis, a process involving the migration and invasion of cancer cells. In most solid tumors, metastasis occurs through collective cell migration (CCM), guided by "cellular leaders". These leader cells generate forces through actomyosin-mediated protrusion and contractility.

View Article and Find Full Text PDF

In this work, the high cycle fatigue behavior and tensile properties of Ti-Al-Mo-Cr-V-Nb-Zr-Sn titanium alloy at room temperature with a basketweave structure and bimodal structure were studied. The results show that the fatigue strength of the basketweave structure is higher, while the balance of strength and plasticity of the bimodal microstructure is better. However, the fatigue performance of the bimodal microstructure is unstable due to the bilinear phenomenon of the S-N curve.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!