Thermodynamics and efficiency of sequentially collisional Brownian particles: The role of drivings.

Phys Rev E

Universidade de São Paulo, Instituto de Física, Rua do Matão, 1371, 05508-090 São Paulo, SP, Brasil.

Published: October 2022

Brownian particles placed sequentially in contact with distinct thermal reservoirs and subjected to external driving forces are promising candidates for the construction of reliable engine setups. In this contribution, we address the role of driving forces for enhancing the collisional machine performance. Analytical expressions for thermodynamic quantities such as power output and efficiency are obtained for general driving schemes. A proper choice of these driving schemes substantially increases both power output and efficiency and extends the working regime. Maximizations of power and efficiency, whether with respect to the strength of the force, driving scheme, or both have been considered and exemplified for two kind of drivings: generic power-law and harmonic (sinusoidal) drivings.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.106.044134DOI Listing

Publication Analysis

Top Keywords

brownian particles
8
driving forces
8
power output
8
output efficiency
8
driving schemes
8
driving
5
thermodynamics efficiency
4
efficiency sequentially
4
sequentially collisional
4
collisional brownian
4

Similar Publications

Hypothesis: The porosity affects the rheological response of porous particle suspensions.

Experiments: Non-Brownian suspensions of porous particles immersed in a Newtonian Polyisobutene are investigated. Three different particles, with different porosity, pore structure and similar size, and non-porous irregular particles are used.

View Article and Find Full Text PDF

Direct measurement of surface interactions experienced by sticky microcapsules made from environmentally benign materials.

J Colloid Interface Sci

December 2024

Department of Chemical and Biomolecular Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, United States.

We present a study combining experimental measurements, theoretical analysis, and simulations to investigate core-shell microcapsules interacting with a solid boundary, with a particular focus on understanding the short-range potential energy well arising from the tethered force. The microcapsules, fabricated using a Pickering emulsion template with a cinnamon oil core and calcium alginate shell, were characterized for size (∼5-6μm in diameter) and surface charge (∼-20mV). We employed total internal reflection microscopy and particle tracking to measure the microcapsule-boundary interactions and diffusion, from which potential energy and diffusivity profiles were derived.

View Article and Find Full Text PDF

Dynamics of a single anisotropic particle under various resetting protocols.

J Phys Condens Matter

December 2024

Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, Düsseldorf, 40225, GERMANY.

We study analytically the dynamics of an anisotropic particle subjected to different stochastic resetting schemes in two dimensions. The Brownian motion of shape-asymmetric particles in two dimensions results in anisotropic diffusion at short times, while the late-time transport is isotropic due to rotational diffusion. We show that the presence of orientational resetting promotes the anisotropy to late times.

View Article and Find Full Text PDF

The ability of particles to transform absorbed energy into translational movements brings peculiar order into nonequilibrium matter. Connected together into a chain, these particles collectively behave completely differently from well-known equilibrium polymers. Examples of such systems vary from nanoscale to macroscopic objects.

View Article and Find Full Text PDF

Metaparticles: Computationally engineered nanomaterials with tunable and responsive properties.

J Chem Phys

December 2024

Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands.

In simulations, particles are traditionally treated as rigid platforms with variable sizes, shapes, and interaction parameters. While this representation is applicable for rigid core platforms, particles consisting of soft platforms (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!