Solitary routes to chimera states.

Phys Rev E

Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany.

Published: October 2022

We show how solitary states in a system of globally coupled FitzHugh-Nagumo oscillators can lead to the emergence of chimera states. By a numerical bifurcation analysis of a suitable reduced system in the thermodynamic limit we demonstrate how solitary states, after emerging from the synchronous state, become chaotic in a period-doubling cascade. Subsequently, states with a single chaotic oscillator give rise to states with an increasing number of incoherent chaotic oscillators. In large systems, these chimera states show extensive chaos. We demonstrate the coexistence of many of such chaotic attractors with different Lyapunov dimensions, due to different numbers of incoherent oscillators.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.106.L042203DOI Listing

Publication Analysis

Top Keywords

chimera states
12
solitary states
8
states
7
solitary routes
4
routes chimera
4
states solitary
4
states system
4
system globally
4
globally coupled
4
coupled fitzhugh-nagumo
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!