An encounter-based approach consists in using the boundary local time as a proxy for the number of encounters between a diffusing particle and a target to implement various surface reaction mechanisms on that target. In this paper, we investigate the effects of stochastic resetting onto diffusion-controlled reactions in bounded confining domains. We first discuss the effect of position resetting onto the propagator and related quantities; in this way, we retrieve a number of earlier results but also provide complementary insights into them. Second, we introduce boundary local time resetting and investigate its impact. Curiously, we find that this type of resetting does not alter the conventional propagator governing the diffusive dynamics in the presence of a partially reactive target with a constant reactivity. In turn, the generalized propagator for other surface reaction mechanisms can be significantly affected. Our general results are illustrated for diffusion on an interval with reactive end points. Further perspectives and some open problems are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.106.044121 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!