Green synthesis of carbon quantum dots toward highly sensitive detection of formaldehyde vapors using QCM sensor.

Chemosphere

Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; Department of Chemistry, College of Science, University of Bahrain, Sakhir 32038, Bahrain. Electronic address:

Published: January 2023

AI Article Synopsis

Article Abstract

In the present study, an eco-friendly method for the preparation of carbon quantum dots (CQDs) is demonstrated using hydrothermal treatment of laurel leaves. The optical and structural characteristics of the prepared CQDs are investigated using transmission electron microscopy (TEM), X-ray photoelectron (XPS), fluorescent and UV-visible spectroscopies, Fourier transform infrared (FTIR), and X-ray diffraction (XRD). The quartz crystal microbalance (QCM) sensor designed and modified with CQDs is capable of detecting formaldehyde vapors in the presence of other interfering chemical-vapor analytes. The changes in the frequency of the QCM sensor are linearly correlated with the injected formaldehyde concentrations. The sensing properties of formaldehyde, including sensitivity and reversibility, are investigated. Detection of formaldehyde in the presence of humidity is carefully discussed for home or workplace room environment use. The adsorption kinetics of various VOCs vapors are also calculated and discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.137031DOI Listing

Publication Analysis

Top Keywords

qcm sensor
12
carbon quantum
8
quantum dots
8
detection formaldehyde
8
formaldehyde vapors
8
formaldehyde
5
green synthesis
4
synthesis carbon
4
dots highly
4
highly sensitive
4

Similar Publications

Investigating the interactions between a poloxamer and TEMPO-oxidised cellulose nanocrystals.

Carbohydr Polym

March 2025

Bristol Composites Institute, School of Civil, Aerospace, and Design Engineering, University of Bristol, University Walk, Bristol BS8 1TR, UK. Electronic address:

Cellulose nanocrystals (CNCs) have emerged as promising, sustainable materials, with applications in sensors, coatings, pharmaceuticals, and composites. Their modification with block copolymers such as PEO-PPO-PEO triblock copolymers of the Pluronic family has been attempted many times in the literature, with claims that such modification would happen by an anchor(PEO)-buoy(PPO)-anchor(PEO) mechanism. However, there is much disagreement in the literature on this.

View Article and Find Full Text PDF

Unlabelled: Ongoing research in biosensor technologies has led to advanced functional materials for healthcare diagnostics, and bacteriophages (phages), demonstrating exceptional utility due to their high specificity, accuracy, rapid, label-free, and wireless detection capabilities with minimal false-positive results. Phage-based-pathogen-detecting biosensors (PBPDBs) include surface plasmon resonance (SPR) biosensors, magnetoelastic (ME), electrochemical, and quartz crystal microbalance (QCM) biosensors. Commonly used substrates for PBPDBs are gold, silicon, glass, carbon-based materials, magnetic particles, and quantum dots.

View Article and Find Full Text PDF

Surface State Control of Apatite Nanoparticles by pH Adjusters for Highly Biocompatible Coatings.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.

Apatite nanoparticles are biocompatible nanomaterials, so their film formation on biodevices is expected to provide effective bonding with living organisms. However, the biodevice-apatite interfaces have not yet been elucidated because there is little experimental evaluation and discussion on the nanoscale interactions, as well as the apatite surface reactivities. Our group has demonstrated the biomolecular adsorption properties on a quartz crystal microbalance with dissipation (QCM-D) sensor coated with apatite nanoparticles, demonstrating the applicability of apatite nanoparticle films on devices.

View Article and Find Full Text PDF

Collaborative integration of SERS and QCM sensing for label-free multi-component gas detection.

Talanta

January 2025

Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044, China; School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing, 400044, China. Electronic address:

The effective qualitative and quantitative detection of mixed components of volatile organic compounds (VOCs) with similar molecular structures has always been a challenge and hotpoint in the research. A novel quartz-crystal microbalance (QCM) nanocomposite sensor integrated with a surface-enhanced Raman scattering (SERS) detection platform for multi-component gas analysis was proposed and fabricated in this paper. MIL-100 (Fe)/PAN composite fibers were developed on QCM via electrospinning of polyacrylonitrile (PAN) and hydrothermal synthesis, addressing the integration issues of MIL-100 particles in devices while maintaining high specific surface area.

View Article and Find Full Text PDF
Article Synopsis
  • A novel type of superabsorbent hydrogels was created by cross-linking hydrophilic poly(vinylphosphonates) through a process called photochemical reaction, which involves light to trigger the bonding.
  • The process included synthesizing specific copolymers using a rare earth metal technique, followed by modifications to introduce vinylphosphonic acid, leading to significant water absorption capabilities of up to 150g of water per g of hydrogel.
  • The hydrogels were shown to respond to changes in pH, with experiments demonstrating their ability to swell and deswell reversibly in response to acidic or basic environments, making them suitable for use as sensors in various applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!