In recent times, reduced graphene oxide has gained more attention in various fields. In our study, a direct synthesis of reduced graphene oxide using a novel carbon-rich agro-waste from Pennisetum glaucum was used. Ferrocene acted as an oxidizing agent during thermal degradation at 300 °C for 15 and 20 min to promote graphene oxide and reduced graphene oxide formation. The X-ray diffraction peak at 2θ indicating a shift from 16.86 to 24.28°, presence of functional groups like -OH stretching, -C = C-, C = O, C-O, and C-OH by Fourier transmission infrared spectroscopy, prominent D and G bands at 1308 cm and 1578 cm by Raman spectra and UV-visible spectroscopy peak shift from 235 to 245 nm (π-π*, C = C bonds) confirmed the reduction of graphene oxide to reduced graphene oxide. The average particle size values 233.3 nm for graphene oxide and 63.57 nm for reduced graphene oxide illustrate the nanoscale range of our synthesized material. The negative zeta potential values in the range - 45.5 mV and - 29.5 mV for graphene oxide and its reduced forms infer the dispersion stability along with surface oxygen group presence. We have also highlighted the formation of graphene oxide quantum dots by magnetic stirring and confirmed by UV transilluminator and photoluminescence spectra. The photodegradation efficiency was optimized using central composite design for dosage, dye concentration, pH, and time for both malachite green and reactive blue dye. The kinetic studies report pseudo-first-order kinetic model for catalytic degradation and statistical Analysis of variance proved the significance of the process for p value < 0.05. Thus, the synthesized graphene materials could be used as a potential candidate for environmental applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-24018-0DOI Listing

Publication Analysis

Top Keywords

graphene oxide
44
reduced graphene
24
oxide reduced
12
graphene
11
oxide
11
central composite
8
composite design
8
reduced
6
optimization reduced
4
oxide synthesis
4

Similar Publications

Activated Graphite with Richly Oxygenated Surface from Spent Lithium-Ion Batteries for Microwave Absorption.

Small

January 2025

School of Materials and Physics & Center of Mineral Resource Waste Recycling, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.

Designing spent graphite anodes from lithium-ion batteries (LIBs) for applications beyond regenerated batteries offers significant potential for promoting the recycling of spent LIBs. The battery-grade graphite, characterized by a highly graphitized structure, demonstrates excellent conductive loss capabilities, making it suitable for microwave absorption. During the Li-ion intercalation and deintercalation processes in battery operation, the surface layer of spent graphite (SG) becomes activated, forming oxygen-rich functional groups that enhance the polarization loss mechanism.

View Article and Find Full Text PDF

The majority of industries throughout the world rely largely on fossil fuels as their primary energy source. However, these resources are finite and become scarcer by the day. Therefore, exploring alternative fuels and additives for diesel fuel is imperative to mitigate fuel consumption.

View Article and Find Full Text PDF

The performance of nanofluids is largely determined by their thermophysical properties. Optimizing these properties can significantly enhance nanofluid performance. This study introduces a hybrid strategy based on computational intelligence to determine the optimal conditions for ternary hybrid nanofluids.

View Article and Find Full Text PDF

Purpose: This study investigated the synergistic effects of reduced graphene oxide (RGO) on the antibacterial activity of three calcium hydroxide-based intracanal medicaments with different vehicles.

Methods: Multispecies biofilms were cultured in a bovine root canal model. Intracanal medicaments containing nonaqueous vehicles, including N-methyl-2-pyrrolidone (NMP; CleaniCal), propylene glycol (PG; UltraCal XS), and polyethylene glycol (PEG; Calcipex II), were placed in the model.

View Article and Find Full Text PDF

Highly compressible lamellar graphene/cellulose/sodium alginate aerogel via bidirectional freeze-drying for flexible pressure sensor.

Int J Biol Macromol

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Graphene exhibits exceptional electrical properties, and aerogels made from it demonstrate high sensitivity when used in sensors. However, traditional graphene aerogels have poor biocompatibility and sustainability, posing potential environmental and health risks. Moreover, the stacking of their internal structures results in low compressive strength and fatigue resistance, which limits their further applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!