Landscape evolution is driven by tectonics, climate and surface denudation. In New Zealand, tectonics and steep climatic gradients cause a dynamic landscape with intense chemical weathering, rapid soil formation, and high soil losses. In this study, soil, and elemental redistribution along two adjacent hillslopes in East Otago, New Zealand, having different landscape settings (ridge versus valley) are compared to identify soil weathering and erosion dynamics. Fallout radionuclides (Pu) show that over the last ~ 60 years, average soil erosion rates in the valley (~ 260 [t km year]) are low compared to the ridge (~ 990 [t km year]). The ridge yields up to 26% lower soil weathering intensity than the topographical-protected valley. The lowest soil weathering intensity is found at both hilltop positions, where tors (residual rocks) are present and partially disintegrate. The soil weathering intensity increases with distance from tors, suggesting that tors rejuvenate the chemical weathering signature at the hilltop positions with fresh material. The inversed and decreasing weathering degree with all soil depth indicates that the fresh mineral contribution must be higher at the soil surface than at the bedrock weathering front. Higher erosion rates at the exposed ridge may be partially attributed to wind, consistent with rock abrasion of tors, and low local river sediment yields (56 [t km year]). Thus, the East Otago spatial patterns of soil chemistry and erosion are governed by tor degradation and topographic exposure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9672066 | PMC |
http://dx.doi.org/10.1038/s41598-022-23731-7 | DOI Listing |
BMC Plant Biol
January 2025
Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou, 570228, China.
Drought has a significant impact on ecosystem functions, especially on the biogeochemical cycling of phosphorus (P), which is a crucial nutrient for plant growth and productivity. Despite its importance, the effects of different drought scenarios on soil P cycling and availability remain poorly understood in previous studies. This study simulated drought conditions in tropical soils using maize as a test crop under varying field capacity (FC) levels (100%, 80%, 60%, 40%, and 20%) over a 60-day pot experiment.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Centre of Biotechnology, University of Allahabad, Prayagraj, Uttar Pradesh, 211002, India.
The severe climate change has caused a drastic water level disparity around the globe, which eventually has been one of the biggest problems of this era related to land degradation. This has caused the multidimensional impact on ecology, the environment, and their components. Algae, one of the ancient micro-engineers, are involved in the functioning of soil microcosm.
View Article and Find Full Text PDFJ Environ Qual
January 2025
Department of Soil Science, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Maintaining yield goals while reducing nitrate-nitrogen (NO-N) leaching to groundwater is a challenge for potato (Solanum tuberosum) production in the Wisconsin Central Sands as well as across the United States. The objectives of this study were to quantify the effect of conventional and enhanced efficiency nitrogen (N) fertilizers on NO-N leaching, crop yield, and N uptake in potatoes. We compared five N treatments, which include a 0 N control and 280 kg ha as ammonium sulfate and ammonium nitrate (AS/AN), polymer-coated urea (PCU), urea with a urease inhibitor (Urea+UI), or urea with a UI and a nitrification inhibitor (Urea+UI+NI).
View Article and Find Full Text PDFPhysiol Plant
January 2025
Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy.
Ensuring food security is one of the main challenges related to a growing global population under climate change conditions. The increasing soil salinity levels, drought, heatwaves, and late chilling severely threaten crops and often co-occur in field conditions. This work aims to provide deeper insight into the impact of single vs.
View Article and Find Full Text PDFSci Rep
January 2025
Shaanxi Province Key Laboratory of Bio-resources, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China.
Soil salinization becomes serious under climate change and human activities. Although the residue decomposition contributes lots to soil carbon storage and fertility, the decomposition process and microbial mechanisms on saline-alkali soils are still vague facing climate change. We measured the mass loss of residue (0, 4, 8, 15, 30, 60 and 90 days), CO emission (every two days), and the microbial community structure (0, 4, 15 and 90 days) by using the litter bag method, gas chromatography and high-throughput sequencing technology during the residue decomposition (90 days) in a saline-alkali soil from the Tarim River Basin, China under various temperatures (15 °C, 25 °C, 35 °C) and soil moisture levels (20%, 40%, 60% water holding capacity).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!