Musical learning is related to the development of audio-visuomotor associations linking gestures with musical sounds. To study the role of auditory feedback in learning, 115 students (56 guitarists, 59 pianists) at the beginner, intermediate and advanced levels were recruited. Playing with sound (audio-motor feedback), mute practice (motor feedback), and piece listening (auditory feedback) were compared to first sight reading to assess the role of auditory and motor feedback in procedural learning. The procedure consisted of the execution of a standard piece for determining the students' level and 4 further music executions (every week for 4 weeks), preceded by different practice conditions (for 12 min, once a day, for 5 days). Real musical pieces (e.g., Segovia, Schubert, Bartók) were used. Performance evaluation focused on four macro-categories: note, rhythm, dynamics and smoothness. For both instruments, first-sight reading (A - M -) was associated with the worst performance: silent motor practice (A - M +) resulted in learning the rhythmic structure of the piece and in a smoother performance. Listening to pieces (A + M -) resulted in learning the agogics and in improving articulation and smoothness. Listening during performance (A + M +) resulted in fewer intonation errors. Interestingly, auditory feedback was more relevant for beginners than for advanced students, as evidenced by the greater benefits of listening during practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671877 | PMC |
http://dx.doi.org/10.1038/s41598-022-24262-x | DOI Listing |
Clin Linguist Phon
January 2025
École d'orthophonie et d'audiologie, Faculté de médecine, Université de Montréal, Québec, Canada.
This article presents the Quebec French adaptation of the Consensus Auditory-Perceptual Evaluation of Voice (CAPE-V), a standardised protocol for evaluating voice quality. Developed through collaboration within the Quebec Voice Speech-Language Pathologist (SLP) Community of Practice, the adapted tool addresses linguistic and cultural nuances specific to Quebec French. This adaptation ensures standardised assessments and harmonises clinical and research practices across the province.
View Article and Find Full Text PDFHealthcare (Basel)
January 2025
Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison Street, Suite 201, Chicago, IL 60612, USA.
Background/objectives: Gait retraining is widely used in orthopedic rehabilitation to address abnormal movement patterns. However, retaining walking modifications can be challenging without guidance from physical therapists. Real-time auditory biofeedback can help patients learn and maintain gait alterations.
View Article and Find Full Text PDFMol Brain
January 2025
Research Centre for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan.
Cognitive processes such as action planning and decision-making require the integration of multiple sensory modalities in response to temporal cues, yet the underlying mechanism is not fully understood. Sleep has a crucial role for memory consolidation and promoting cognitive flexibility. Our aim is to identify the role of sleep in integrating different modalities to enhance cognitive flexibility and temporal task execution while identifying the specific brain regions that mediate this process.
View Article and Find Full Text PDFJ Exp Psychol Hum Percept Perform
January 2025
School of Psychology, University of Sussex.
Human listeners have a remarkable capacity to adapt to severe distortions of the speech signal. Previous work indicates that perceptual learning of degraded speech reflects changes to sublexical representations, though the precise format of these representations has not yet been established. Inspired by the neurophysiology of auditory cortex, we hypothesized that perceptual learning involves changes to perceptual representations that are tuned to acoustic modulations of the speech signal.
View Article and Find Full Text PDFNat Commun
January 2025
Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
While animals readily adjust their behavior to adapt to relevant changes in the environment, the neural pathways enabling these changes remain largely unknown. Here, using multiphoton imaging, we investigate whether feedback from the piriform cortex to the olfactory bulb supports such behavioral flexibility. To this end, we engage head-fixed male mice in a multimodal rule-reversal task guided by olfactory and auditory cues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!