Despite multiple efficacious therapies in common between psoriasis (PS) and Ulcerative Colitis (UC), mechanisms underlying their common pathophysiology remain largely unclear. Here we sought to establish a link by evaluating expression differences and pathway alterations in diseased tissues. We identified two sets of differentially expressed genes (DEGs) between lesional and nonlesional tissues in meta-analyses of data collected from baseline samples in 3 UC and then 3 PS available clinical studies from Pfizer. A shared gene signature was defined by 190 DEGs common to both diseases. Commonly dysregulated pathways identified via enrichment analysis include interferon signaling, partly driven by genes IFI6, CXCL9, CXCL10 and CXCL11, which may attract chemotaxis of Th1 cells to inflammatory sites; IL-23 pathway (IL-23A, CCL20, PI3, CXCL1, LCN2); and Th17 pathway except IL-17A. Elevated expression of costimulatory molecules ICOS and CTLA4 suggests ongoing T-cell activation in both diseases. The clinical value of the shared signature is demonstrated by a gene set improvement score reflecting post-treatment molecular improvement for each disease. This is the first study using transcriptomic meta-analysis to define a tissue gene signature and pathways dysregulated in both PS and UC. These findings suggest immune mechanisms may initiate and sustain inflammation similarly in the two diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9671879PMC
http://dx.doi.org/10.1038/s41598-022-22465-wDOI Listing

Publication Analysis

Top Keywords

signature pathways
8
psoriasis ulcerative
8
ulcerative colitis
8
gene signature
8
shared tissue
4
tissue transcriptome
4
signature
4
transcriptome signature
4
pathways psoriasis
4
colitis despite
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Merck & Co., Inc., Rahway, NJ, USA.

Background: Recent anti-amyloid mAb trial results demonstrate slowing of Alzheimer's disease progression, but to date do not fully halt or reverse this progression. Optimization of anti-amyloid therapy (timing and duration of intervention, modality, combinations, biomarker guidance) is limited by incomplete understanding of the disease, such as relationship between amyloid and tau pathways. Mechanistic Alzheimer's progression modeling investigated how amyloid and tau pathologies are connected in driving progression.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Memory and Aging Center, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.

Women account for almost two-thirds of Alzheimer's disease (AD) cases, yet evidence significantly less clinical benefit from recently deployed amyloid-lowering therapies. To close this disparity gap, there is an urgent need to identify biological drivers of sex differences in the manifestation and clinical response to AD therapeutics. A recent review of multi-omic studies of AD reported >75% of studies showed female-specific changes at the molecular level (vs.

View Article and Find Full Text PDF

Background: Stomach adenocarcinoma (STAD) is the fifth most common tumor worldwide, imposing a significant disease burden on populations, particularly in Asia. Oxidative stress is well-known to play an essential role in the occurrence and progression of malignancies. Our study aimed to construct a prediction model by exploring the correlation between oxidative stress-related genes and the prognosis of patients with STAD.

View Article and Find Full Text PDF

Cellular senescence (CS) is a state of irreversible cell cycle arrest, and the accumulation of senescent cells contributes to age-associated organismal decline. The detrimental effects of CS are due to the senescence-associated secretory phenotype (SASP), an array of signaling molecules and growth factors secreted by senescent cells that contribute to the sterile inflammation associated with aging tissues. Recent studies, both in vivo and in vitro, have highlighted the heterogeneous nature of the senescence phenotype.

View Article and Find Full Text PDF

Identifying the signatures of intestinal dysbiosis caused by common stresses is fundamental to establishing efficient health monitoring strategies for sea cucumber. This study investigated the impact of six common stress experienced frequently in aquaculture on the growth performance, intestinal homeostasis and microbiota of sea cucumber, including thermal (23°C), hypoosmotic (22‰ salinity), ammonium (0.5 mg/L NH -N), and nitrite (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!