Mitophagy is an important metabolic mechanism that modulates mitochondrial quality and quantity by selectively removing damaged or unwanted mitochondria. BNIP3 (BCL2/adenovirus e1B 19 kDa protein interacting protein 3), a mitochondrial outer membrane protein, is a mitophagy receptor that mediates mitophagy under various stresses, particularly hypoxia, since BNIP3 is a hypoxia-responsive protein. However, the underlying mechanisms that regulate BNIP3 and thus mediate mitophagy under hypoxic conditions remain elusive. Here, we demonstrate that in hypoxia JNK1/2 (c-Jun N-terminal kinase 1/2) phosphorylates BNIP3 at Ser 60/Thr 66, which hampers proteasomal degradation of BNIP3 and drives mitophagy by facilitating the direct binding of BNIP3 to LC3 (microtubule-associated protein 1 light chain 3), while PP1/2A (protein phosphatase 1/2A) represses mitophagy by dephosphorylating BNIP3 and triggering its proteasomal degradation. These findings reveal the intrinsic mechanisms cells use to regulate mitophagy via the JNK1/2-BNIP3 pathway in response to hypoxia. Thus, the JNK1/2-BNIP3 signaling pathway strongly links mitophagy to hypoxia and may be a promising therapeutic target for hypoxia-related diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9672126PMC
http://dx.doi.org/10.1038/s41419-022-05418-zDOI Listing

Publication Analysis

Top Keywords

mitophagy
9
bnip3
8
proteasomal degradation
8
protein
6
hypoxia
5
bnip3 phosphorylation
4
phosphorylation jnk1/2
4
jnk1/2 promotes
4
promotes mitophagy
4
mitophagy enhancing
4

Similar Publications

Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.

Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.

View Article and Find Full Text PDF

Fucoidan Oligosaccharide Supplementation Relieved Kidney Injury and Modulated Intestinal Homeostasis in D-Galactose-Exposed Rats.

Nutrients

January 2025

Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.

A fucoidan oligosaccharide (FOS), a potent compound derived from algae, is known for its diverse biological activities, including prebiotic activity, anticancer activity, and antioxidative properties, and has demonstrated supportive therapeutic effects in treating kidney ailments. This study was conducted to explore the protective influence of FOS on kidney damage due to aging induced by D-galactose in Sprague Dawley (SD) rats. The low-dose FOS group was administered FOS (100 mg/kg) by gavage, and the high-FOS group received FOS (200 mg/kg) by gavage.

View Article and Find Full Text PDF

Dysregulation of Mitochondrial Homeostasis in Cardiovascular Diseases.

Pharmaceuticals (Basel)

January 2025

Department of Cardiac Surgery, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.

Mitochondria dysfunction plays a central role in the development of vascular diseases as oxidative stress promotes alterations in mitochondrial morphology and function that contribute to disease progression. Redox imbalances can affect normal cellular processes including mitochondrial biogenesis, electrochemical equilibrium, and the regulation of mitochondrial DNA. In this review, we will discuss these imbalances and, in particular, the potential role of mitochondrial fusion, fission, biogenesis, and mitophagy in the context of vascular diseases and how the dysregulation of normal function might contribute to disease progression.

View Article and Find Full Text PDF

Autophagy and mitophagy are critical cellular processes that maintain homeostasis by removing damaged organelles and promoting cellular survival under stress conditions. In the context of diabetic kidney disease, these mechanisms play essential roles in mitigating cellular damage. This review provides an in-depth analysis of the recent literature on the relationship between autophagy, mitophagy, and diabetic kidney disease, highlighting the current state of knowledge, existing research gaps, and potential areas for future investigations.

View Article and Find Full Text PDF

The application of regenerative therapy through stem cell transplantation has emerged as a promising avenue for the treatment of diabetes mellitus (DM). Transplanted tissue homeostasis is affected by disturbances in the clock genes of stem cells. The aim of this study is to investigate the diurnal variation in mitochondrial genes and function after transplantation of adipose-derived mesenchymal stem cells (T2DM-ADSCs) from type 2 diabetic patients into immunodeficient mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!