Tenofovir (TFV; prescribed as TFV disoproxil fumarate and TFV alafenamide prodrugs) is currently used for HIV prevention and treatment. TFV must be phosphorylated twice into TFV-diphosphate (TFV-DP) to become pharmacologically active. Previously, we reported heterogeneity in TFV-DP distribution in colorectal tissue (a putative site of HIV infection) sections collected from research participants receiving a TFV-containing enema. This observed heterogeneity is likely multifactorial. Of note, TFV-DP is structurally similar to ATP. It is known that nucleotidases such as nucleoside triphosphate diphosphohydrolases (NTPDases) dephosphorylate ATP. Thus, it was hypothesized that NTPDase-mediated dephosphorylation plays a role in regulating TFV-DP levels in colorectal tissue. To test this hypothesis, recombinant NTPDase proteins (NTPDase 1, 3, 4, 5, 6, and 8) were incubated, individually, with TFV-DP to determine their abilities to dephosphorylate TFV-DP in vitro. Following incubations, TFV-DP dephosphorylation was determined using both malachite green phosphate assays and ultrahigh-performance liquid chromatography tandem mass spectrometry. From these, NTPDase 1 exhibited the highest activity toward TFV-DP. Further, enzyme kinetic analysis revealed Michaelis-Menten kinetics for NTPDase 1-mediated TFV-DP dephosphorylation. Next, immunoblot analyses were conducted to confirm the expression of NTPDase 1 protein in human colorectal tissue. Liquid chromatography coupled to mass spectrometry proteomics analysis was used to measure the relative abundance of NTPDases in human colorectal tissue among healthy adult individuals ( = 4). These analyses confirmed the high abundance of NTPDase 1 in human colorectal tissue. Taken together, results suggest that NTPDase 1 may contribute to the regulation of TFV-DP levels. The above data provide important insights into the dephosphorylation of TFV-DP. SIGNIFICANCE STATEMENT: Nucleoside triphosphate diphosphohydrolases (NTPDases) that are involved in enzymatic ATP dephosphorylation may contribute to tenofovir-diphosphate (TFV-DP) dephosphorylation, leading to its inactivation. In this study, the NTPDases responsible for TFV-DP dephosphorylation in vitro and their expression in human colorectal tissue were investigated. Through this work, it was demonstrated that NTPDase 1 has the highest activity toward TFV-DP dephosphorylation, and it was abundant in human colorectal tissue. Importantly, these studies will increase our understanding of TFV-DP disposition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/dmd.122.000855 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!