Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Plasmonic micro/nanobeads exhibit unique physicochemical properties attributed to their localized surface plasmon resonance (LSPR), enabling use in sensitive suspension array assays and matrix-assisted laser deposition/ionization mass spectrometry (MALDI-MS) analysis. Herein, we report a facile method for the preparation of magnetic plasmonic micro/nanobeads by the combination of Shirasu porous glass (SPG) membrane emulsification and polydopamine (PDA)-assisted in-situ reduction. The magnetic responsiveness properties endowed by doped FeO nanoparticles result in easy and complete separation of unwanted components during the preparation and bio-reaction processes. In addition, the coverage degree of the plasmonic shell can be flexibly controlled. As a result of the significant metal-enhanced fluorescence effect, as-prepared plasmonic microbeads enable the sensitive detection of alpha-fetoprotein (AFP) and deoxyribonucleotide (DNA) in suspension array with detection limits of 0.11 ng mL and 1.65 fmol mL, respectively, 8.6 times and 2 orders of magnitude higher than unmodified microbeads. Furthermore, as-prepared plasmonic nanobeads can be used as a matrix for MALDI-MS to allow the detection of low molecular weight biological molecules. As little as 0.2 pmol of proline and serine can be detected in a sample as small as 0.5 μL. This work provides a general strategy for the design of multifunctional plasmonic micro/nanomaterials that will help promote further advancements in sample analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2022.340577 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!