Ferritin is the main iron storage protein and plays an important role in maintaining iron homeostasis. In a previous study, we reported that apoferritin exerted a neuroprotective effect against MPTP by regulation of brain iron metabolism and ferroptosis. However, the precise cellular mechanisms of extracellular ferritin underlying this protection are not fully elucidated. Ferritin was reported to be localized in different intracellular compartments, cytoplasm or released outside cells. Here we demonstrated that the intracellular iron increased after iron treatment in primary cultured astrocytes. These iron-loaded astrocytes released more ferritin in order to buffer extracellular iron. Using co-culture system of primary cultured astrocytes and MES23.5 dopaminergic cells, we showed that ferritin released by astrocytes could enter MES23.5 dopaminergic cells. And primary cultured astrocytes protected MES23.5 dopaminergic cells against 1-methyl-4-phenylpyridinium ion (MPP)-induced neurotoxicity and ferroptosis. In addition, we found that exogenous Apoferritin or Ferritin pretreatment could significantly inhibit MPP-induced cell damage by restoring the cell viability and mitochondrial transmembrane potential (ΔΨm). Furthermore, exogenous Apoferritin and Ferritin might also protect MES23.5 dopaminergic cells against MPP by decreasing reactive oxygen species (ROS) and inhibiting the increase of the labile iron pool (LIP). This suggests that astrocytes increased ferritin release to respond to iron overload, which might inhibit iron-mediated oxidative damage and ferroptosis of dopamine (DA) neurons in Parkinson's disease (PD).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2022.11.018 | DOI Listing |
Clin Ther
December 2024
Neurology Department, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom; Department of Psychology, Manchester Metropolitan University, Manchester, United Kingdom.
Purpose: An increased prevalence of peripheral polyneuropathy (PN) in Parkinson's disease (PD) associated with greater functional impairment has previously been reported. A possible cause has been suggested as levodopa therapy. The aim of this real-world study was to assess the prevalence and the characteristics of PN in PD and to investigate the putative association between PN and oral levodopa.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
December 2024
Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, China. Electronic address:
Background: Individual neurobiological heterogeneity among patients with tobacco use disorder (TUD) hampers the identification of neuroimaging phenotypes.
Methods: The current study recruited 122 TUD individuals and 57 healthy controls, and obtained their 3D-T1 images. Heterogeneity through discriminative analysis (HYDRA) was applied to uncover the potential subtype of TUD where regional gray matter volume (GMV) was treated as the feature.
Prog Neuropsychopharmacol Biol Psychiatry
December 2024
Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India. Electronic address:
The Gut-Brain Axis (GBA) is a crucial link between the gut microbiota and the central nervous system. Xenobiotics, originating from diverse sources, play a significant role in shaping this interaction. This review examines how these compounds influence neurotransmitter dynamics within the GBA.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
December 2024
Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil. Electronic address:
Amphetamine (AMPH) abuse represents a major global public health issue, highlighting the urgent need for effective therapeutic interventions to manage addiction caused by this psychostimulant. This study aimed to assess the potential of m-trifluoromethyl-diphenyldiselenide [(m-CF-PhSe)] in preventing the addictive effects induced by AMPH through targeting dopamine metabolism proteins. (m-CF-PhSe) is of interest due to its demonstrated efficacy in mitigating opioid abuse, establishing it as a promising candidate for addiction treatment research.
View Article and Find Full Text PDFBrain Res
December 2024
Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Tampa, FL, United States. Electronic address:
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a complex etiology, including genetic and environmental factors. A growing body of evidence (preclinical and clinical studies) implicates a potential role of gut microbiome dysregulation in ASD pathophysiology. This review focuses on the microbial metabolite p-Cresol, produced by certain gut bacteria such as Clostridium, and its potential role in ASD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!