Age- and sex-dependent effects of DNA glycosylase Neil3 on amyloid pathology, adult neurogenesis, and memory in a mouse model of Alzheimer's disease.

Free Radic Biol Med

Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, University Hospital Trondheim, Trondheim, Norway. Electronic address:

Published: November 2022

Oxidative stress generating DNA damage has been shown to be a key characteristic in Alzheimer's disease (AD). However, how it affects the pathogenesis of AD is not yet fully understood. Neil3 is a DNA glycosylase initiating repair of oxidative DNA base lesions and with a distinct expression pattern in proliferating cells. In brain, its function has been linked to hippocampal-dependent memory and to induction of neurogenesis after stroke and in prion disease. Here, we generated a novel AD mouse model deficient for Neil3 to study the impact of impaired oxidative base lesion repair on the pathogenesis of AD. Our results demonstrate an age-dependent decrease in amyloid-β (Aβ) plaque deposition in female Neil3-deficient AD mice, whereas no significant difference was observed in male mice. Furthermore, male but not female Neil3-deficient AD mice show reduced neural stem cell proliferation in the adult hippocampus and impaired working memory compared to controls. These effects seem to be independent of DNA repair as both sexes show increased level of oxidative base lesions in the hippocampus upon loss of Neil3. Thus, our findings suggest an age- and sex-dependent role of Neil3 in the progression of AD by altering cerebral Aβ accumulation and promoting adult hippocampal neurogenesis to maintain cognitive function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2022.11.020DOI Listing

Publication Analysis

Top Keywords

age- sex-dependent
8
dna glycosylase
8
mouse model
8
alzheimer's disease
8
base lesions
8
oxidative base
8
female neil3-deficient
8
neil3-deficient mice
8
dna
5
neil3
5

Similar Publications

Seizures elicited by transcorneal 6 Hz stimulation in developing rats.

PLoS One

January 2025

Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic.

Seizures elicited by corneal 6-Hz stimulation are widely acknowledged as a model of temporal lobe seizures. Despite the intensive research in rodents, no studies hint at this model in developing animals. We focused on seven age groups of both male and female rats.

View Article and Find Full Text PDF

This study assessed the feasibility of miR17 ~ 92-based antiresorptive strategy by determining the effects of conditional transgenic (cTG) overexpression of miR17 ~ 92 in myeloid cells on bone and osteoclasts. Osteoclasts of male and female cTG mutant mice each showed 3- to fivefold overexpression of miR17 ~ 92 cluster genes compared to those of age- and sex-matched wildtype (WT) littermates. Male but not female cTG mutant mice had more trabecular and cortical bones as well as lower bone resorption reflected by reduction in osteoclast number and resorbing surface.

View Article and Find Full Text PDF

This review summarizes the mechanism and role of physical activity in maintaining the proper functioning of the musculoskeletal system. Bone adaptation to the mechanical environment occurs in skeletal regions subjected to the greatest stresses resulting from the nature of exercise, however, there is a varied response of bone tissue to mechanical loads depending on its material and structural properties (trabecular and cortical). The regulation of bone tissue metabolism during physical exercise is influenced by factors associated with mechanical stress (gravitational forces, impact loading, and muscular contractions) as well as by systemic mechanisms (hormones, myokines, cytokines).

View Article and Find Full Text PDF

Sex-dependent efficacy of sphingosine-1-phosphate receptor agonist FTY720 in mitigating Huntington's disease.

Pharmacol Res

December 2024

Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology, Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, Oslo N-0372, Norway; Institute of Nutritional Medicine (INUM) and Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, Lübeck D-23538, Germany; Department of Neuromedicine and Neuroscience, Faculty of Medicine and Life Sciences, University of Latvia (LU), Jelgavas iela 3, Rīga LV-1004, Latvia; Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Ramat Aviv IL-6997801, Israel. Electronic address:

Huntington's disease (HD) is a debilitating neurodegenerative disorder characterized by severe motor deficits, cognitive decline and psychiatric disturbances. An early and significant morphological hallmark of HD is the activation of astrocytes triggered by mutant huntingtin, leading to the release of inflammatory mediators. Fingolimod (FTY), an FDA-approved sphingosine-1-phosphate (S1P) receptor agonist is used to treat multiple sclerosis (MS), a neuroinflammatory disease, and has shown therapeutic promise in other neurological conditions.

View Article and Find Full Text PDF

Unlabelled: The field of competitive swimming lacks broadly applicable predictive models for talent identification across various age groups of adolescent swimmers. This study aimed to construct a predictive model for athletic talent using machine learning methods based on anthropometric and physiological data. Baseline data were collected from 5444 participants aged 10-18 in Shanghai, China, between 2015 and 2018, with 4969 completing a 3-year follow-up.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!