The development of cancer vaccines based on tumor-associated antigens is hurdled by lack of an efficient adjuvant and insufficient efficacy. To improve the efficacy of vaccines, a genetically-engineered method was employed in this work to achieve the codelivery of antigen and adjuvant to enhance immune responses. Trichosanthin is a plant-derived protein that possesses cancer immune stimulation function. A genetically engineered protein vaccine composed of trichosanthin (adjuvant) and legumain domain (a peptidic antigen) was constructed, which was further chemically modified with mannose for targeting dendritic cells (DCs). The method is facile and ready for scaling up for massive production. Such a "two-in-one" vaccine is advantageous for codelivery for augmenting the immune responses. The vaccine inhibited the tumors by triggering a robust cytotoxic T lymphocyte response in the orthotopic-breast-tumor mice. Furthermore, the vaccine was loaded into the temperature-sensitive hydrogel based on Pluronic F127 for implanting use in the post-surgical site. The sustained-released vaccine from the hydrogel inhibited not only the tumor recurrence but also the lung metastases of breast cancer. These findings demonstrated that it was a safe and effective vaccination for breast cancer immunotherapy in a prophylactical and therapeutical manner for remodeling the tumor immune microenvironment and arresting tumor growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.11.045 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!