Synergistic methodological strategies based on the fields of microbial biotechnology and materials science open up an enormous range of possibilities for the sustainable production of advanced materials with predictable properties. This study shows how naturally produced polyhydroxyalkanoate (PHA) particles are introduced into bacterial cellulose (BC) driven by their bacterial producers. Thanks to an extensive knowledge of the internal structure of BC, it was possible to control the colonization process, i.e. loading and localization of PHA. A subsequent acid treatment favored the PHA-BC bonding at the position reached by the bacteria. These biodegradable films showed improved mechanical and barrier properties even with respect to reference plastic films 8 times thicker, reaching a Young's modulus 4.25 times higher and an oxygen permeability 3 times lower than those of polyethylene terephthalate (PET) films. Owing to the versatility of the method, a wide variety of materials can be developed for very diverse fields of application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2022.11.120 | DOI Listing |
Polymers (Basel)
December 2024
Faculty of Medical Technology, Prince of Songkla University, Hatyai 90110, Thailand.
Nanocomposites based on metal nanoparticles (MNP) prepared with mangosteen () peel extract-mediated biosynthesis of Ag/Zn have attracted considerable interest due to their potential for various practical applications. In this study, their role in developing antibacterial protection for rubber cotton gloves is investigated. The process of mangosteen-peel-extract-mediated biosynthesis produced Ag/Zn nanocomposites with respective diameters of 23.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science & Technology, Tianjin 300457, People's Republic of China.
Plant Dis
January 2025
Microbiology, Campus Universitário s/n, Viçosa, Minas Gerais, Brazil, 36570-000;
The Ralstonia solanacearum Species Complex (RSSC) is the most significant plant pathogen group with a wide host range. It is genetically related but displays distinct biological features, such as restrictive geography occurrence. The RSSC comprises three species: Ralstonia pseudosolanacearum (phylotype I and III), Ralstonia solanacearum (phylotype IIA and IIB), and Ralstonia syzygii (phylotype IV) (Fegan and Prior 2005).
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
College of Life Science, Shenyang Normal University, Shenyang 110000, PR China.
A Gram-stain-negative, aerobic, motile, catalase-positive, oxidase-positive, short rod-shaped marine bacterium, designated as YIC-827, was isolated from Qingdao, Shandong Province, China. The results showed that cells of strain YIC-827 could grow optimally at 25-35 °C, pH 6.5-7.
View Article and Find Full Text PDFPrep Biochem Biotechnol
January 2025
Centro Universitario Municipal de Taguasco "Enrique José Varona", Universidad de Sancti Spíritus "José Martí Pérez", Sancti Spíritus, Cuba.
The biomethanization of lignocellulosic wastes remains an inefficient and complex process due to lignin structures that hinder the hydrolysis step, therefore, some treatments are required. This work describes the addition of an enriched microbial consortium in the biomethanization of rice straw. The experiment was carried out in lab batch reactors following two strategies: (i) pretreatment of rice straw for 48 h using the enriched microbial consortium (dilution 1:100), and (ii) addition of this enriched microbial consortium (dilution 1:100) directly to the anaerobic reactors (bioaugmentation).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!