Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Quorum sensing (QS) and quorum quenching (QQ) are common phenomena in microbial systems and play an important role in the nitrification process. However, rapidly start up partial nitrification regulated by N-acyl-homoserine lactones (AHLs)-mediated QS or QQ has not been reported. Hence, we chose N-butyryl homoserine lactone (C-HSL) and N-hexanoyl homoserine lactone (C-HSL) as the representative AHLs, and Vanillin as the representative quorum sensing inhibitor (QSI) combined intermittent aeration to investigate their effects on the start-up process of partial nitrification. The start-up speed in the group with C-HSL or C-HSL addition was 1.42 or 1.26 times faster than that without addition, respectively. Meanwhile, the ammonium removal efficiency with C-HSL or C-HSL addition was increased by 13.87 % and 17.30 % than that of the control group, respectively. And, partial nitrification could maintain for a certain period without AHLs further addition. The increase of Nitrosomonas abundance and ammonia monooxygenase (AMO) activity, and the decrease of Nitrobacter abundance and nitrite oxidoreductase (NXR) activity were the reasons for the rapid start-up of partial nitrification in the AHLs groups. Vanillin addition reduced AMO and hydroxylamine oxidoreductase (HAO) activity, and increased Nitrobacter abundance and NXR activity, thus these were not conducive to achieving partial nitrification. Denitrifying bacteria (Hydrogenophaga, Thauera and Aquimonas) abundance increased in the Vanillin group. QS-related bacteria and gene abundance were elevated in the AHLs group, and reduced in the Vanillin group. Function prediction demonstrated that AHLs promoted the nitrogen cycle while Vanillin enhanced the carbon cycle. This exploration might provide a new technical insight into the rapid start-up of partial nitrification based on QS control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2022.160191 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!