Portable hydrogel test kit integrated dual-emission coordination polymer nanocomposite for on-site detection of organophosphate pesticides.

Biosens Bioelectron

Key Laboratory of Chemical Biology of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China. Electronic address:

Published: January 2023

It is of great significance to on-site detection of organophosphate pesticides (OPs) for pollution monitoring and poisoning estimation. Herein, we developed a portable hydrogel test kit for on-site detection of OPs, which is based on the integration of agarose hydrogel with dual-emission coordination polymers (CPs) nanocomposite comprised of Ru(bpy) and zinc (II)-based CPs (ZnCPs) loaded with thioflavin T (ThT). Different from Ru(bpy) with stable fluorescence in acidic environment, ThT@ZnCPs is highly sensitive to H, which destroys the structure of ZnCPs as a host and quenches ThT@ZnCPs fluorescence. The distinct fluorescence behaviors of Ru(bpy) and ThT@ZnCPs in acidic environment enable the hydrogel test kit to exhibit ratiometric fluorescence responses to acetylcholinesterase (AChE), which hydrolyzes acetylcholine to acetic acid and provides H. On this basis, combining the inhibition effect of OPs to AChE activity, a ratiometric fluorescence method for OPs detection was established with the hydrogel test kit, and satisfactory results have been achieved in buffered aqueous solutions and apple juice samples. Attractively, by employing smartphone as a signal readout, on-site quantitation of OPs was accomplished with the features of easy to use, portability and low cost, demonstrating a great promising for point-of-care testing in food safety monitoring.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2022.114890DOI Listing

Publication Analysis

Top Keywords

hydrogel test
16
test kit
16
on-site detection
12
portable hydrogel
8
dual-emission coordination
8
detection organophosphate
8
organophosphate pesticides
8
acidic environment
8
ratiometric fluorescence
8
ops
5

Similar Publications

We engineered a microfluidic platform to study the effects of bioactive glass nanoparticles (BGNs) on cell viability under static culture. We incorporated different concentrations of BGNs (1%, 2%, and 3% w/v) in collagen hydrogel (with a concentration of 3.0 mg/mL).

View Article and Find Full Text PDF

Structurally Transformable and Reconfigurable Hydrogel-Based Mechanical Metamaterials and Their Application in Biomedical Stents.

ACS Appl Mater Interfaces

January 2025

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.

Mechanical metamaterials exhibit several unusual mechanical properties, such as a negative Poisson's ratio, which impart additional capabilities to materials. Recently, hydrogels have emerged as exceptional candidates for fabricating mechanical metamaterials that offer enhanced functionality and expanded applications due to their unique responsive characteristics. However, the adaptability of these metamaterials remains constrained and underutilized, as they lack integration of the hydrogels' soft and responsive characteristics with the metamaterial design.

View Article and Find Full Text PDF

In tumor treatment, the sequence and timing of drug action have a large influence on therapeutic efficacy. Multi-drug sequential release systems (MDSRS) enable the sequential and/or on-demand release of multiple drugs following the single administration of a therapeutic agent. Several researchers have explored MDSRS, providing fresh strategies for synergistic cancer therapy.

View Article and Find Full Text PDF

A thermosensitive chitin hydrogel with mild photothermal-chemotherapy for facilitating multidrug-resistant bacteria infected wound healing.

Int J Biol Macromol

December 2024

Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province & Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.

Bacterial infection of skin wounds leads to serious health problems, including skin defects, inflammatory pain, and even death. To meet the requirements for successful treatment of complicated wounds, a multifunctional dressing is thus highly desirable. In this work, a thermosensitive hydrogel dressing (HBCA) exhibiting injectability, adaptiveness and mild photothermal antibacterial activity was developed for effective infected wound treatment.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a common autoimmune joint disease characterized by persistent synovial inflammation and cartilage damage. The current clinical treatments primarily utilize drugs such as triptolide (TP) to address inflammation, yet they are unable to directly repair damaged cartilage. Furthermore, the persistent inflammation often undermines the effectiveness of traditional cartilage repair strategies, preventing them from achieving optimal outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!