Design, synthesis and biological evaluation studies of novel anti-fibrosis agents bearing sulfoxide moiety.

Bioorg Med Chem

Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China. Electronic address:

Published: December 2022

AI Article Synopsis

Article Abstract

Fibrosis, a chronic disease with high morbidity and mortality, is mainly characterized by excessive accumulation of extracellular matrix (ECM). At present, pathogenesis of fibrosis is incompletely understood, and there is an urgent need to develop safe and effective drugs. In this study, we designed and synthesized a series of novel small-molecule compounds through structural modification and fragment hybridization. Among them, a potential anti-fibrosis drug compd.1 was founded to be able to dose-dependently down-regulate ACTA2 and CTGF mRNA levels in human hepatic stellate cells (LX-2) treated with TGF-β. In addition, compd.1 significantly improved the bridging fibrosis and collagen content in the CCl-induced liver fibrosis mice model. Moreover, compd.1 reduced lung inflammation and fibrotic area in bleomycin-induced pulmonary fibrosis mice model. These findings suggested that compd.1 is a promising candidate for further anti-fibrosis researches, and extended chemical space might help us to explore better anti-fibrosis drug.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmc.2022.117096DOI Listing

Publication Analysis

Top Keywords

anti-fibrosis drug
8
fibrosis mice
8
mice model
8
fibrosis
5
design synthesis
4
synthesis biological
4
biological evaluation
4
evaluation studies
4
studies novel
4
anti-fibrosis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!