Selective ion separations are increasingly needed to combat water scarcity, recover resources from wastewater, and enable the efficient recycling of electronics waste. Emulsion liquid membranes (ELMs) have received interest due to rapid kinetics, high selectivities, and low solvent requirements but are too unstable for industrial usage. We demonstrate that polymeric microcapsules can serve as robust, solvent-free mimics of ELMs. As a proof of concept, we incorporated the copper-selective ligand Lix 84-I in the walls of microcapsules formed from a commercial polystyrene--polybutadiene--polystyrene triblock polymer. The microcapsules were formed from a double-emulsion template, resulting in particles typically 20-120 μm in diameter that encapsulated even smaller droplets of a dilute (≤0.5 M) HSO solution. Batch experiments demonstrated facilitated-transport behavior, with equilibrium reached in as little as 10 min for microcapsules with 1% ligand, and with ∼15-fold selectivity for Cu over Ni. Furthermore, the microcapsules could be packed readily in columns for flow-through operation, thus enabling near-complete Cu removal in ∼2 min under certain conditions, recovery of Cu by flowing through fresh dilute HSO, and reuse for at least 10 cycles. The approach in this work can serve as a template for using selective ligands to enable robust and simple flow-through processes for a variety of selective ion separations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.2c07242 | DOI Listing |
Mikrochim Acta
January 2025
Guizhou Province, Qianzhi Mingguang Soaphorn Rice Processing Base, Zhijin County, Maochang Town, Bijie CityBijie City, 552103, China.
A smartphone-based non-invasive method was developed for salivary uric acid detection using Gleditsia Sinensis carbon dots (GS-CDs). The GS-CDs synthesized by the one-pot hydrothermal method emitted blue fluorescence at a maximum excitation wavelength of 350 nm and had good fluorescence stability in the presence of different ions, while showing selectivity to uric acid solution. The ability of uric acid (UA) to quench the fluorescent substances present in the GS-CDs, was confirmed through HPLC-FLD and LC-MS, FTIR and XPS.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, China.
A lateral flow assay (LFA) was developed for the simultaneous or separate detection of mercury ion and silver ion based on isothermal nucleic acid amplification. T-Hg-T and C-Ag-C were utilized in the isothermal nucleic acid amplification strategy to form specific complementary base pairs. Under the action of KF polymerase and endonuclease Nt.
View Article and Find Full Text PDFAnalyst
January 2025
Department of Chemical and Biological Engineering, Andong National University, Andong, Republic of Korea.
Here, we developed a novel, cost-effective fluorescence light-up biosensor for Pb detection based on a label-free G-quadruplex combined with modified thioflavin T (ThT) derivatives. Among the various G-quadruplex sequences tested, only T2 exhibited fluorescence light-up properties upon interacting with the modified ThT derivatives in the presence of Pb. To enhance the Pb sensing system, we also compared modified ThT derivatives, including the newly synthesized propyl-substituted ThT (ThT-P) and butyl-substituted ThT (ThT-B).
View Article and Find Full Text PDFAnal Methods
January 2025
Jiangxi University of Chinese Medicine, Nan Chang, Jiangxi 330004, China.
This study reports a novel ratiometric fluorescence sensor based on a tetraphenylethylene-bipyridine covalent organic framework (TPE-Bpy-COF) for the sensitive detection of Cu, leveraging the unique coordination properties of the bipyridine moieties. The interaction between Cu and the nitrogen atoms in the bipyridine units induces fluorescence quenching at 500 nm through an efficient host-guest electron transfer mechanism, where excited-state electrons from the COF framework are transferred to the vacant orbitals of Cu. Upon excitation at 410 nm, the sensor exhibits a primary emission peak at 500 nm, which is quenched in the presence of Cu, while an overtone peak at 820 nm remains stable, serving as an internal reference for ratiometric measurements and significantly enhancing the accuracy and reliability of the sensor.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science& Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
Lanthanide-doped upconversion luminescent nanoparticles (UCNPs) have garnered extensive attention due to their notable anti-Stokes shifts and superior photostability. Notably, Ho-based UCNPs present a complex energy level configuration, which poses challenges in augmenting their luminescence efficiency. Herein, a rational design strategy was used to enhance the upconversion luminescence intensity of Ho ions by improving the photon absorption ability and energy utilization efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!